The association between allergic diseases and cancer: a systematic review of the literature

A.F. Karim ${ }^{1,2 *}$, L.E.H. Westenberg ${ }^{1}$, L.E.M. Eurelings¹, R. Otten³, R. Gerth van Wijk ${ }^{1}$
The first two authors contributed equally to this study.
'Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus Medical Center Rotterdam, the Netherlands; ${ }^{2}$ Department of Internal Medicine, Groene Hart Hospital, Gouda, the Netherlands; ${ }^{3}$ Department of Allergy, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands. *Corresponding author: a.karim@erasmusmc.nl, faiz.karim@ghz.nl

Abstract

Introduction: Atopic syndrome (allergic rhinitis, asthma and eczema) and food allergies are frequently reported, especially in developed countries. Studies have previously suggested an inverse association between allergic diseases and cancer. The aim of this study was to investigate the association between allergic diseases and different types of cancers by performing a systematic review of the literature. Methods: A systematic literature search of Ovid Medline, Embase, Web of Science, Cochrane Library and Google Scholar was performed for studies on the association between allergic diseases and cancers. Results: We identified a total of 5868 articles through our search, with I45 articles describing an association between allergic diseases and cancers. Allergies were associated with reduced risk of brain cancer, pancreatic cancer and melanoma and with possibly reduced risk of lymphatic and hematopoietic cancer, colorectal cancer, urogenital cancers of women and cancers in general. Asthma, but not atopy without asthma, was however associated with increased risk of lung cancer. There is possibly no association between allergic diseases and the risk of breast cancer and prostate cancer. Conclusion: Overall, allergic diseases are inversely associated with the risk of cancers.

KEY WORDS

Allergic diseases, allergic diseases and cancer, atopy, cancer, malignancy

INTRODUCTION

Immunoglobulin E (IgE)-mediated allergic diseases (hereon called allergies) are frequently reported, especially in developed countries, and result in high morbidity and high costs for healthcare systems. ${ }^{1}$ The most commonly reported allergies are atopic diseases (allergic rhinitis, asthma and eczema) and food allergies. The diagnostics and treatment options for patients with allergies have improved significantly in the past decades. Although still controversial, the hygiene hypothesis proposes a decrease in infectious disease in early childhood as the cause of high incidence of allergies and asthma in developed countries. ${ }^{2}$ The lack of early infections leads to the stimulation of a T-helper 2 (Th-2) cell-mediated immune response favoring allergic diseases. The genetic susceptibility of the host however, may also play a key role in developing atopic symptoms. ${ }^{3}$
Previous studies have highlighted the potential inverse association between allergies and cancer..$^{-6}$ Currently, the association between allergy and oncology is of high interest and the European Academy of Allergy and Clinical Immunology (EAACI) has established a Task Force to better understand basic immune responses in both fields. ${ }^{7}$ Patients with allergic diseases may develop a state of enhanced immune surveillance leading to fewer occurrences of malignancies such as glioma and pancreatic cancer. ${ }^{8,9}$ The purpose of this study was to give an overview of the association between allergic diseases and different types of cancers by performing a systematic review of the literature.

METHODS

A systematic literature search was performed to include all articles that addressed an association between allergy and cancer. This systematic review was performed and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement
Outcomes were structured by cancer category. The number of studies reporting a positive, negative or no association was noted. For each category the lowest and highest values of the most frequent risk estimates, such as the relative risk (RR) odds ratio (OR), hazard ratio (HR) and the standardized incidence ratio (SIR) were reported.

Data source

Studies on the association between allergy and cancer were conducted from the following online databases: Embase, Ovid Medline, Web of Science, Cochrane Library and Google Scholar.
The last search was run on June $2^{\text {nd }}, 2017$. No filters for date or language were used in the search strategy (see the additional Appendix for the full search strategies).

Study selection

The titles and abstracts of all studies were reviewed after extracting duplicates. The studies were evaluated using the following criteria for inclusion: articles in English or English translation, original studies focusing on the relationship between allergy and cancer. Studies focusing on serological parameters such as serum IgE and malignancy, in vivo and in vitro animal studies, review articles and meta-analysis were excluded. Three reviewers (AFK, LW, RO) independently performed a review of the full text and could reach consensus on the relevance for inclusion of each article.

Data visualization

In order to visualize the various risk estimates, we used the R Statistical Software to plot forest plots for all included studies and plotted separate forest plots for the different cancer subgroups. We made forest plots for all study outcomes reported in relative risk (RR), OR, HR and SIR. Studies that reported other outcomes, such as the standardized mortality ratio, are not plotted in the forest plots; neither are studies that did not report 95% confidence intervals. No overall estimates were calculated, as the use of different methods to express risk estimates did not allow us to pool the studies. For the same reason, the degree of heterogeneity of studies could not be calculated.

RESULTS

Of a total of 5868 articles identified by the search, 312 articles publishing an association between allergy and cancer were eligible (Supplementary figure 1). After screening, we further narrowed down our selection to I45 articles that reported an association between allergies and malignancies. The main outcomes of this study are shown in table 1, table 2 (at the end of this article) and figure 1, Forest plots of the association between allergic diseases and cancer types.

Brain cancer

In total, we identified i9 studies describing an association between allergic diseases and brain cancer.

Positive association with brain cancer: no study demonstrated a positive association between allergic diseases and a brain tumor.

Negative association with brain cancer: We included I9 studies reporting the association between allergic disease and brain cancer. Of these, six studies showed no association between allergic diseases and brain cancer; ${ }^{10-16}$ I2 studies demonstrated a consistent reduced risk of brain tumors in patients with allergic diseases (OR between 0.34 and 0.76); $;^{11,17-28}$ and one study identified no association between allergic disease and meningioma, but did show a negative association between allergic disease and glioma. No studies reported a positive association.
Of the is studies, i6 examined the association between allergic diseases and brain cancer in adults, while three studies examined this association in children and adolescents.

Conclusion: Allergic diseases are mostly associated with a reduced risk of brain tumors.

* women aged > 35 years
** women aged 35 or less

Breast cancer

In total, eight studies on the association between allergic diseases and breast cancer were included.
Positive association with breast cancer: only one out of eight studies identified a positive association between allergic diseases and breast cancer (OR 2.5). ${ }^{29}$
Negative association with breast cancer: a negative association between allergic diseases and breast cancer was found in two studies (OR 0.77 and 0.86). ${ }^{30,35}$ Hedderson et al. found a decreased risk (OR 0.77) of breast cancer in women aged 35 years or older having a history of allergic diseases. ${ }^{\circ}$ However, in the same study, no association was observed between breast cancer and allergic diseases in women younger than 35 years. The other five studies did not identify a positive or negative association between allergic diseases and breast cancer. ${ }^{32-36}$

Conclusion: In general, allergic diseases do not appear to influence the breast cancer risk in women.

Lymphatic and hematopoietic cancer

We included a total of 47 studies on the association between allergic diseases and lymphatic and hematopoietic cancers. Negative as well as positive associations between allergic diseases and lymphatic and hematopoietic cancers have been published. Of the 47 studies, 20 showed no association, 15 reported a negative association (range OR: 0.29 to 0.87) and eight demonstrated a positive association

(range OR: I .3 to 3.84); four studies presented different associations for different subgroups.

Positive association with lymphoma: A positive association between allergic diseases and lymphoma was demonstrated in four studies (range OR:I.4-3.84).34,37-39 A positive association between airborne allergies and development of hematological malignancies, in particular, mature B-cell lymphoma (HR: I.47) was found in one study. ${ }^{8}$ In this study however, the risk of malignancy was increased in women with a history of allergies to airborne allergens of plants, grass or trees, but not in men. Another study showed overall increased risk for non-Hodgkin lymphoma (NHL) in patients with allergic diseases (OR: I.4). ${ }^{37}$ The high risk was mostly associated with erythema and allergic alveolitis, rather than with airborne allergies, and black patients with allergies seemed to be at a higher risk of developing NHL than white patients.

Negative association with lymphoma: A total of io studies showed a protective, negative association between allergic diseases and lymphoma (range OR: 0.29-0.87).40-49 In the study of Becker et al., hay fever and asthma did not influence the risk of lymphoma, and the association between food allergies and lymphoma was negative (OR: $0.67) .{ }^{47}$ The only study investigating the association between allergic diseases and NHL in children demonstrated a negative association (OR: 0.50)..8

In total, I4 studies however could not find any association between allergic diseases and lymphoma. $33,35,39,47,50 \cdot 59$

Positive association with other hematological malignancies: Seven studies of other hematological malignancies including lymphatic or myeloid leukemia, multiple myeloma and myelodysplastic syndrome, demonstrated positive associations between allergic diseases and these malignancies (range OR: $1.3-3 \cdot 5$). ${ }^{34,60-65}$ In Linabery et al., no association was found between allergic diseases and hematological malignancies, but a clear association was noted between asthma and myelodysplastic syndrome (HR: 2.I7). ${ }^{63}$ This study was however limited to post-menopausal women.

Negative association with other hematological malignancies: A total of seven studies demonstrated a negative association between other hematological malignancies and history of allergic diseases (range OR: 0.4-0.6). ${ }^{66-72}$

A total of io studies (out of 47) examined the association between hematological malignancies and allergic diseases in children. As mentioned earlier, one study studied the association between allergic diseases and NHL and found a protective, negative association (OR:O.5)..8 Another study found a positive association between allergic diseases and acute lymphocytic leukemia (ALL) in children (OR 2.2). ${ }^{64}$ The other io studies investigated the association between allergic diseases and leukemia in children. Only two studies showed a positive association between allergic diseases and leukemia (OR I.4-I. 7 and OR 2.2 respectively). ${ }^{60,64}$ In Spector et al., the early onset atopy was associated with increased risk of ALL, while there was no association between late onset atopy and ALL in children. ${ }^{64}$ In five studies, no associations between leukemia and allergic diseases were found. ${ }^{64,72 \cdot 75}$

Conclusion: Most of the studies demonstrated no association between allergic diseases and lymphatic and hematopoietic cancers. However, there are more studies showing a protective role of allergies than studies with a positive association between allergic diseases and lymphatic and hematopoietic cancers.

* Allergic rhinitis
** Asthma
*** Atopic dermatitis

Skin cancer

There is a limited number of studies on the association between skin cancers and allergic diseases available. We included seven studies.

Positive association with skins cancers: In two studies, a positive association between allergic diseases and skin cancer was described; SIR: I.4I for basal cell carcinoma (BCC), SIR: I. 33 for squamous cell carcinoma (SCC)..7677

Negative association with skin cancers: A total of six studies described negative associations between allergic diseases and skin cancers (range SIR 0.39 to 0.84 ; range OR 0.53 to 0.78)..$^{66-82}$ In Cheng et al., the risk for developing BCC was decreased (OR: O.6I), while there was no association between allergic diseases and SCC. ${ }^{7}$ Two studies found a negative association between atopic dermatitis and non-melanoma scan cancers (NMSC) (OR 0.78 and SIR 0.40)..79,80 Four out of five studies investigating the relationship between allergies and malignant melanoma observed a decreased risk for melanoma (range SIR: $0.46-0.84)^{76,77,8,82}$ In Hwang et al., the risk for developing malignant melanoma was unchanged in patients with allergic rhinitis, asthma and atopic dermatitis. ${ }^{80}$

Conclusion: Allergic diseases appear to reduce the risk for developing malignant melanoma and NMSC.

Colorectal cancers

We included 17 studies that evaluated the association between allergic diseases and colorectal cancers.

Positive association with colorectal cancers: Three studies described positive associations between allergic diseases and colorectal cancers (range SIR: I.I7-4.69)..80,83,84 Vesterinen et al. found a positive association between asthma and colon carcinoma (SIR:I.I7), but could not identify any association between asthma and rectal carcinoma. ${ }^{84}$ In Hwang et al., only a positive association
was seen between asthma and colon carcinoma in women (SIR: I.24). ${ }^{8 \circ}$

Negative association with colorectal cancer: A negative association between allergies and colon cancer was found in nine studies (range OR: $0.54-0.86$). ${ }^{80,85-92}$ Prizment et al. studied the risk of colorectal cancer only in women and found a negative association (HR:o.74). ${ }^{86}$ Negri et al. described only a negative association between allergic diseases and rectum carcinoma, but no association between allergic diseases and colon carcinoma (OR: 0.64). ${ }^{\circ \circ}$ In contrast La Vecchia et al. identified a negative association between allergic diseases and colon carcinoma, yet no association with rectal carcinoma (RR: 0.6)..$^{9 r}$
No associations were observed between allergic diseases and colorectal cancers in II studies. ${ }^{32,34-36,80,84,88,90,94,93,94}$

Conclusion: Overall, the risk of colorectal cancer is possibly reduced in patients with allergic diseases.

Pancreatic cancer

We identified io studies on the association between allergic diseases and pancreatic cancer.

Positive association with pancreatic cancer: No studies were published describing a positive association between allergic diseases and pancreatic cancer.

Negative association with pancreatic cancer: In total, seven studies reported a negative association between allergic diseases and pancreatic cancer (range OR: 0.43-0.77).9.95-100 In Olson et al., hay fever and allergies to animals were related to a reduced risk of pancreatic cancer, while asthma and other allergies did not appear to influence the risk of pancreatic cancer (OR 0.58)..98 Three other studies did not observe an association between allergic diseases and pancreatic cancer. ${ }^{87,101,102}$

Conclusion: Overall, allergic diseases are associated with a reduced risk of pancreatic cancer.

Urogenital cancers

Among urogenital cancers, a total of i2 studies were identified reporting the association between allergic diseases and prostate cancer ${ }^{32-36,76,81,87,102-105}$ and seven studies described the association with female urogenital cancers. ${ }^{66,88,87,102,106-108}$

Positive association with urogenital cancers: In total, three studies demonstrated an increased risk of prostate cancer in patients with allergic diseases (range SIR: I.I8-1.64). ${ }^{6, \text { roz,105 }}$ Only one study showed a positive association between allergic diseases and cervix cancer (SIR I.34), ${ }^{66}$ however, only the association between asthma and cancer was studied.

Negative association with urogenital cancers: Only one study showed a negative association between allergic diseases and prostate cancer (SMR 72). ${ }^{8{ }^{8}}$ In eight studies, no significant association was described between allergic diseases and prostate cancer. ${ }^{32-36,8,103,104}$ Three studies on uterine leiomyomas, squamous cell cervical cancer, cervix and ovarian cancer showed reduced risks of these cancers in women with allergic diseases. ${ }^{8,1,06,107}$ In Kallen et al. however, only the association between asthma and cervix and ovarian cancer was studied. ${ }^{8{ }^{8}}$ Four other studies looking at the association between allergic diseases and cervical cancer and ovarian cancer observed no changes in the risk of developing these cancers in women. $76,87,102,108$ Ji et al. however, despite observing no general association between allergic diseases and ovarian cancer, did see a positive association between asthma and cervix cancer (SIR I.34). ${ }^{76}$

Conclusion: In general, there is possibly no association between allergic diseases and prostate cancer in men. Studies on the association between allergic diseases and female urogenital cancers are limited, but favor a protective role of allergies.

Lung cancer

We included a total of is studies, which studied the relationship between allergic diseases and lung cancer.

Positive association with lung cancer: In io studies, increased risks of lung cancer in allergic diseases were observed (range HR: I.26- I3). ${ }^{36,76,8,8,8,8,8, \text { ro9-ri3 }}$ In Reynolds et al., the lung cancer risk was increased only in men with asthma. ${ }^{109}$ In all except for two studies, ${ }^{\text {II4,155 }}$ focusing only on examining the associations between asthma (and not other allergic disorders) and lung cancer, showed an increased risk of lung cancer. $33,35,36,76,8,8,84,8,109-113$ In Turner et al., lung cancer mortality was increased in patients with asthma, but reduced in patients with hay fever only or patients with both asthma and hay fever (RR I.II, 0.85 and 0.73 , respectively). ${ }^{87}$ In another study, lung cancer incidence was increased in current smokers and former smokers with a history of asthma, but in patients with asthma who never smoked, the cancer risk was unchanged (HR I3, 4.0 and 0.6 , respectively). ${ }^{\text {II }}$

Negative association with lung cancer: In five studies, negative associations between allergic diseases and lung cancer were found (OR $0.37-0.85$). ${ }^{87,102,115-117}$ These studies usually examined the association between allergies (not only asthma) and lung cancer, and showed a reduced risk of developing lung cancer. The same applied to studies where, in general, no association was found between allergic diseases and lung cancer. ${ }^{32,33,35,133-115,118}$

Conclusion: Asthma is related with an increased risk of lung cancer, while atopic patients without asthma may be protected.

	Study Chung Fillippidis Frentzel-Beyme
	Goedert
	Liao tupo Menegaux Mchau
	Rosato Schoemaket Stot-Mille

Other cancers

In total, we included I3 studies that studied the association between other cancers and allergic diseases.
Positive association with other cancers: In two studies, a positive association between allergic diseases and nasopharyngeal cancers was observed (OR 2.29 and HR: 2.33). ${ }^{19,120}$

Negative association with other cancers: Four studies found a negative association between allergic diseases and cancers, including head and neck cancers and rhabdomyosarcoma. ${ }^{121-124}$ However, no associations were noticed for most of other cancers including laryngeal
cancer, ${ }^{125}$ neuroblastoma, ${ }^{\text {r19-126 }}$ biliary tract cancer, ${ }^{127}$ acoustic neuroma, ${ }^{128}$ oral squamous cell carcinoma ${ }^{\text {129 }}$ and Kaposi's sarcoma. ${ }^{30}$

Conclusion: Most of the studies published do not show a change of risk for developing cancers in patients with allergic diseases.

Cancer in general

We investigated the risks of developing cancer in i2 studies.

Positive association with cancer: The risk of developing cancer was increased (OR I.40) in only one study by McWorther. ${ }^{34}$ In this study, hives were associated with the strongest cancer risk and the strongest allergy association was with lymphatic-hematopoietic cancers.

Negative association with cancer: In total, five studies described a negative association between allergic diseases and cancer in general ${ }^{131-135}$ Six other studies did not find an association between allergic diseases and cancer. $35,36,80,136-13^{8}$

Conclusion: Mixed results were noticed, but in general, allergic diseases may reduce the cancer risk.

DISCUSSION

In this systematic review, we described the association between allergic diseases and different types of malignancies. This review delivers a comprehensive overview of the risk of malignancies in patients with allergies.

In this study we demonstrate an inverse association between allergic diseases and most of the cancers. Allergic diseases appear to reduce the risk of brain cancer, pancreatic cancer, melanoma and possibly the risk of lymphatic and hematopoietic cancers, colorectal cancers, female urogenital cancers and cancer in general. The current available studies do not provide sufficient evidence for a protective role of allergic diseases in developing breast cancer and prostate cancer. Asthma appears to increase the risk of lung cancer, however, patients with atopic diseases without asthma possibly do not have an increased risk of lung cancer.

The question of interest is how allergies may cause immunosurveillance. Allergic immunity depends on Th2-cells, basophils, eosinophils, macrophages and the antibodies type IgGi and IgE. ${ }^{139}$ Allergy is a consequence of improved and hyper-responsive immune system, which may possibly recognize dysregulated or damaged cells, including cancer cells, and may efficiently eradicate these cells (immunosurveillance hypothesis). Patients with allergic diseases have thus an adapted immune system, which may protect against cancers. ${ }^{\text {I }}{ }^{40}$ The production of tumor-specific IgE alone, which has antitumor effects of dendritic cells, eosinophils, basophils and mast cells offer better tumor surveillance and reduced risk of cancers. 7 Furthermore, it is suggested that allergic reactions in specific tissues may be able to remove mutagenic triggers before transformation to malignant cells occur (prophylaxis hypothesis).

Despite an inverse association between allergic diseases and cancer, asthma appears to be independently associated with increased risk of lung cancer, after adjustment for smoking habits. The patients with atopic constitution without asthma however, have a possibly reduced risk of lung cancers. Patients with asthma have mostly other subtypes of lung cancer than adenocarcinoma. ${ }^{141}$ Despite the protective role of allergies in cancers, patients with asthma are regularly characterized by airway inflammation, which possibly plays a crucial role in the pathogenesis of lung cancer. Chronic inflammatory conditions may promote development of cancer because of oxidative damage resulting in tumor suppressor gene mutations. Different studies have indeed demonstrated a relationship between chronic airway inflammation and lung cancer. ${ }^{142,143}$ Furthermore, recurrent treatment with local or systemic glucocorticoids may also lead to better tumor outcomes and increased cancer risk. ${ }^{6}$

A next interesting question addresses the role of allergen immunotherapy in the development of cancer. Studies have suggested that tumor microenvironment may favor switching to a tumor-specific IgG4, a less potent immunoglobulin, instead of IgGi and $\operatorname{IgE} .{ }^{144} \mathrm{IgG}_{4}$ antibodies do not have sufficient immunostimulatory capacities, may block the cytotoxic activities of other antibodies and are correlated with shorter survival and disease progression. ${ }^{144,145}$ On the other hand, current data also suggest positive correlation between IgG4-related disease and enhanced cancer risk. ${ }^{146}$ In allergic patients undergoing allergen-specific immunotherapy, increased IgG_{4}-specific antibodies have been observed and correlate with allergen tolerance. ${ }^{147}$ However, to date, no data are available on cancer incidence and mortality in patients being successfully desensitized.

The results of this study may be limited by studies relying on self-reported ascertainment of allergies, different methods of establishing the diagnosis of allergies, retrospective studies and not always adjusting for cofounders. The variety in methodology of the different studies did not permit us to calculate pooled estimates. Furthermore, by classifying all tumors in broad categories such as lung cancer, lymphatic and hematopoietic cancer, we do not consider possible differences between associations in subtypes of tumors. However, a substantial amount of evidence for the inverse association between allergic diseases and malignancies is reported. Exceptions are patients with asthma who have increased risk of lung cancer. Large prospective studies with validated measurement of allergies and data on potentially confounding factors are required for better understanding the association between allergy and oncology.

ACKNOWLEDGMENTS

We thank Wichor Bramer from the Erasmus University Medical Center for his expertise in biomedical information and systematic literature search.

DISCLOSURES

All authors declare no conflicts of interest. No funding or financial support was received.

APPENDIX

Search terms used in the medical database for the literature search in this systematic review on the association between allergy and cancer.

Embase.com (2694)

('allergy'/de OR 'atopy'/de OR 'rhinoconjunctivitis'/de OR 'allergic asthma'/de OR 'allergic rhinitis'/exp OR 'atopic dermatitis'/de OR 'food allergy'/exp OR (allerg* OR atopy OR atopic OR rhinoconjunctivit* OR (rhino NEXT/I conjunctivit*) OR 'hay fever'):ab,ti) AND (oncology/de OR 'neoplasm'/de OR 'malignant neoplastic disease'/exp OR 'precancer and cancer-in-situ'/exp OR 'skin cancer'/ de OR 'cancer risk'/de OR 'cancer incidence'/de OR 'digestive system cancer'/exp OR 'breast cancer'/exp OR 'prostate cancer'/de OR 'bladder cancer'/de OR 'thyroid cancer'/de OR 'brain tumor'/exp OR 'lung cancer'/exp OR 'carcinogenicity'/de OR (oncolog* OR allergooncolog* OR neoplas* OR cancer* OR (tumo* NOT ('tumor necrosis factor')) OR malign* OR leukemi* OR leukaemi* OR glioma* OR glioblastoma* OR astrocytom* OR carcino* OR
lymphoma* OR hodgkin OR myeloma OR meningioma* OR melonoma*):ab,ti) AND ('disease association'/de OR 'health hazard'/de OR 'hazard assessment'/de OR 'incidence'/de OR 'population risk'/de OR 'cancer risk'/de OR 'cancer incidence'/de OR 'odds ratio'/de OR risk/de OR 'neoplasm'/exp/dm_et OR 'risk factor'/de OR (((associat*s NEAR/6 (cancer* OR risk* OR disease* OR factor*)) OR ((risk*) NEAR/6 (cancer* OR disease* OR factor*)) OR hazard* OR incidence OR 'odds ratio' OR relationship* OR allergooncolog* OR (allergo NEXT/I oncolog*)):ab,ti) AND ('observational study'/exp OR 'cohort analysis'/exp OR 'longitudinal study'/exp OR 'retrospective study'/ exp OR 'prospective study'/exp OR 'health survey'/de OR 'health care survey'/de OR 'epidemiological data'/ de OR 'case control study'/de OR 'cross-sectional study'/ de OR 'correlational study'/de OR 'population research'/ de OR 'family study'/de OR 'major clinical study'/de OR 'multicenter study'/de OR 'comparative study'/de OR 'follow up'/de OR 'clinical study'/de OR 'clinical article'/ de OR 'clinical trial'/exp OR 'randomization'/exp OR 'intervention study'/de OR 'open study'/de OR 'community trial'/de OR (((observation* OR epidemiolog* OR famil* OR comparativ* OR communit*) NEAR/6 (stud* OR data OR research)) OR cohort* OR longitudinal* OR retrospectiv* OR prospectiv* OR population* OR (national* NEAR/3 (stud* OR survey)) OR (health* NEAR/3 survey*) OR ((case OR cases OR match*) NEAR/3 control*) OR (cross NEXT/I section*) OR correlation* OR multicenter* OR (multi* NEXT/I center*) OR 'follow up' OR followup* OR clinical* OR trial OR random*):ab,ti) NOT ([Conference Abstract]/lim) AND [english]/lim NOT ([animals]/lim NOT [humans]/lim)

Medline ovid (1585)

("Hypersensitivity"/ OR exp "Rhinitis, Allergic"/ OR "Dermatitis, Atopic"/ OR exp "Food Hypersensitivity"/ OR (allerg* OR atopy OR atopic OR rhinoconjunctivit* OR (rhino ADJ conjunctivit*) OR "hay fever").ab,ti.) AND ("Medical Oncology"/ OR "Neoplasms"/ OR exp "Skin Neoplasms"/ OR exp "Digestive System Neoplasms"/ OR exp "Breast Neoplasms"/ OR exp "Prostatic Neoplasms"/ OR exp "Urinary Bladder Neoplasms"/ OR exp "Thyroid Neoplasms"/ OR exp "Brain Neoplasms"/ OR exp "Lung Neoplasms"/ OR (oncolog* OR allergooncolog* OR neoplas* OR cancer* OR (tumo* NOT ("tumor necrosis factor")) OR malign* OR leukemi* OR leukaemi* OR glioma* OR glioblastoma* OR astrocytom* OR carcino* OR lymphoma* OR hodgkin OR myeloma OR meningioma* OR melonoma*).ab,ti.) AND ("Association"/ OR "Incidence"/ OR "Odds Ratio"/ OR exp risk/ OR exp "Neoplasms"/et OR (((associat*) ADJ6 (cancer* OR risk* OR disease* OR factor*)) OR ((risk*) ADJ6 (cancer* OR disease* OR factor*)) OR hazard* OR incidence OR "odds ratio" OR relationship* OR allergooncolog* OR (allergo

ADJ oncolog*)).ab,ti.) AND (exp "observational study"/ OR exp "Cohort Studies"/ OR exp "health surveys"/ OR "Health Care Surveys"/ OR "Epidemiological Monitoring"/ OR "Case-Control Studies"/ OR exp "Epidemiologic Studies"/ OR "multicenter study"/ OR "comparative study"/ OR exp "clinical study"/ OR "Random Allocation"/ OR (((observation* OR epidemiolog* OR famil* OR comparativ* OR communit*) ADJ6 (stud* OR data OR research)) OR cohort* OR longitudinal* OR retrospectiv* OR prospectiv* OR population* OR (national* ADJ3 (stud* OR survey)) OR (health* ADJ3 survey*) OR ((case OR cases OR match*) ADJ3 control*) OR (cross ADJ section*) OR correlation* OR multicenter* OR (multi* ADJ center*) OR "follow up" OR followup* OR clinical* OR trial OR random*).ab,ti.) AND english.la. NOT (exp animals/ NOT humans/)

Cochrane (150)

((allerg* OR atopy OR atopic OR rhinoconjunctivit* OR (rhino NEXT/I conjunctivit*) OR 'hay fever'):ab,ti) AND ((oncolog* OR allergooncolog* OR neoplas* OR cancer* OR (tumo* NOT ('tumor necrosis factor')) OR malign* OR leukemi* OR leukaemi* OR glioma* OR glioblastoma* OR astrocytom* OR carcino* OR lymphoma* OR hodgkin OR myeloma OR meningioma* OR melonoma*):ab,ti) AND ((((associat*) NEAR/6 (cancer* OR risk* OR disease* OR factor*)) OR ((risk*) NEAR/6 (cancer* OR disease* OR factor*)) OR hazard* OR incidence OR 'odds ratio' OR relationship* OR allergooncolog* OR (allergo NEXT/I oncolog*)):ab,ti)

Web of science (1239)

TS=(((allerg* OR atopy OR atopic OR rhinoconjunctivit* OR (rhino NEAR/I conjunctivit*) OR "hay fever")) AND ((oncolog* OR allergooncolog* OR neoplas* OR cancer* OR (tumo* NOT ("tumor necrosis factor")) OR malign* OR leukemi* OR leukaemi* OR glioma* OR glioblastoma* OR astrocytom* OR carcino* OR lymphoma* OR hodgkin OR myeloma OR meningioma* OR melonoma*)) AND ((((associat*) NEAR/5 (cancer* OR risk* OR disease* OR factor*)) OR ((risk*) NEAR/5 (cancer* OR disease* OR factor*)) OR hazard* OR incidence OR "odds ratio" OR relationship* OR allergooncolog* OR (allergo NEAR/I oncolog*))) AND ((((observation* OR epidemiolog* OR famil* OR comparativ* OR communit*) NEAR/5 (stud* OR data OR research)) OR cohort* OR longitudinal* OR retrospectiv* OR prospectiv* OR
population* OR (national* NEAR/2 (stud* OR survey)) OR (health* NEAR/2 survey*) OR ((case OR cases OR match*) NEAR/2 control*) OR (cross NEAR/I section*) OR correlation* OR multicenter* OR (multi* NEAR/I center*) OR "follow up" OR followup* OR clinical* OR trial OR random*))) AND DT=(article) AND LA=(english)

Google scholar (200)

Allergy/allergies/allergic/atopy/atopic/rhinoconjunctivitis/ "hay fever" oncology/neoplasms/cancer/malignant/ malignancies association/risk/hazard/incidence/"odds ratio"/relationship

REFERENCES

1. Hendaus MA, Jomha FA, Ehlayel M. Allergic diseases among children: nutritional prevention and intervention. Ther Clin Risk Manag. 2016;12:361-72.
2. Brown EM, Arrieta MC, Finlay BB. A fresh look at the hygiene hypothesis how intestinal microbial exposure drives immune effector responses in atopic disease. Semin Immunol. 2013;25:378-87
3. Fishbein $A B$, Fuleihan RL. The hygiene hypothesis revisited: does exposure to infectious agents protect us from allergy? Curr Opin Pediatr. 2012;24:98-102.
4. Zhao H, Cai W, Su S, Zhi D, Lu J, Liu S. Allergic conditions reduce the risk of glioma: a meta-analysis based on 128,936 subjects. Tumour Biol. 2014;35:3875-80.
5. Helby J, Bojesen SE, Nielsen SF, Nordestgaard BG. IgE and risk of cancer in 37747 individuals from the general population. Ann Oncol 2015;26:1784-90
6. Rittmeyer D, Lorentz A. Relationship between allergy and cancer: An overview. Int Arch Allergy Immunol. 2012;159:216-25
7. Jensen-Jarolim E, Bax HJ, Bianchini R, et al. AllergoOncology - the impact of allergy in oncology: EAACI position paper. Allergy. 2017;72:866-87.
8. Chen C, Xu T, Chen J, et al. Allergy and risk of glioma: A meta-analysis Eur J Neurol. 2011;18:387-95
9. Eppel A, Cotterchio M. Gallinger S. Allergies are associated with reduced pancreas cancer risk: A population based case-control study in Ontario, Canada. Int J Cancer. 2007;121:2241-5.
10. Berg-Beckhoff G, Schüz J, Blettner M, et al. History of allergic disease and epilepsy and risk of glioma and meningioma (INTERPHONE study group, Germany). Eur J Epidemiol. 2009;24:433-40.
11. Brenner AV, Linet MS, Fine HA, et al. History of allergies and autoimmune diseases and risk of brain tumors in adults. Int J Cancer. 2002;99:252-9.
12. Schlehofer B, Blettner M, Becker N, Martinsohn C, Wahrendorf J. Medical risk factors and the development of brain tumors. Cancer. 1992;69:2541-7.
13. Shu X, Prochazka M, Lannering B, et al. Atopic conditions and brain tumor risk in children and adolescents-an international case-control study (CEFALO). Ann Oncol. 2014;25:902-8.
14. Wigertz A, Lönn S, Schwartzbaum J, et al. Allergic conditions and brain tumor risk. Am J Epidemiol. 2007;166:941-50.
15. Il'yasova D, McCarthy B, Marcello J, et al. Association between glioma and history of allergies, asthma, and eczema: A case-control study with three groups of controls. Cancer Epidemiol Biomarkers Prev. 2009;18:1232-8.
16. Roncarolo F, Infante-Rivard C. Asthma and risk of brain cancer in children. Cancer Causes Control. 2012;23:617-23.
17. Claus EB, Calvocoressi L, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M. Family and personal medical history and risk of meningioma: Clinical article. J Neurosurg. 2011;115:1072-7.
18. Krishnamachari B, II'yasova D, Scheurer ME, et al. A pooled multisite analysis of the effects of atopic medical conditions in glioma risk in different ethnic groups. Ann Epidemiol. 2015;25:270-4.
19. McCarthy BJ, Rankin K, Il'yasova D, et al. Assessment of type of allergy and antihistamine use in the development of glioma. Cancer Epidemiol Biomarkers Prev. 2011;20:370-8.
20. Ryan P, Lee MW, North JB, McMichael AJ. Risk factors for tumors of the brain and meninges: Results from the Adelaide Adult Brain Tumor Study. Int J Cancer. 1992;51:20-7.
21. Scheurer ME, El-Zein R, Thompson PA, et al. Long-term anti-inflammatory and antihistamine medication use and adult glioma risk. Cancer Epidemiol Biomarkers Prev. 2008;17:1277-81.
22. Schoemaker MJ, Swerdlow AJ, Hepworth SJ, McKinney PA, Van Tongeren M, Muir KR. History of allergies and risk of glioma in adults. Int J Cancer. 2006;119:2165-72.
23. Schoemaker MJ, Swerdlow AJ, Hepworth SJ, Van Tongeren M, Muir KR, McKinney PA. History of allergic disease and risk of meningioma. Am J Epidemiol. 2007;165:477-85.
24. Turner MC, Krewski D, Armstrong BK, et al. Allergy and brain tumors in the INTERPHONE study: Pooled results from Australia, Canada, France, Israel, and New Zealand. Cancer Causes Control. 2013;24:949-60.
25. Wiemels JL, Wiencke JK, Sison JD, Miike R, McMillan A, Wrensch M History of allergies among adults with glioma and controls. Int J Cancer. 2002;98:609-15.
26. Wiemels JL, Wilson D, Patil C, et al. IgE, allergy, and risk of glioma: Update from the San Francisco Bay Area Adult Glioma Study in the Temozolomide era. Int J Cancer. 2009;125:680-7.
27. Wiemels JL, Wrensch M, Sison JD, et al. Reduced allergy and immunoglobulin e among adults with intracranial meningioma compared to controls. Int J Cancer. 2011;129:1932-9.
28. Harding NJ, Birch JM, Hepworth SJ, McKinney PA. Atopic dysfunction and risk of central nervous system tumours in children. Eur J Cancer. 2008;44:92-9.
29. Eriksson NE, Holmen A, Hogstedt B, Mikoczy Z, Hagmar L. A prospective study of cancer incidence in a cohort examined for allergy. Allergy. 1995;50:718-22.
30. Hedderson MM, Malone KE, Daling JR, White E. Allergy and risk of breast cancer among young women (United States). Cancer Causes Control. 2003;14:619-26.
31. Lowcock EC, Cotterchio M, Ahmad N. Association between allergies, asthma, and breast cancer risk among women in Ontario, Canada. Cancer Causes Control. 2013;24:1053-6.
32. Wang H, Rothenbacher D, Löw M, Stegmaier C, Brenner H, Diepgen TL. Atopic diseases, immunoglobulin E and risk of cancer of the prostate, breast, lung and colorectum. Int J Cancer. 2006;119:695-701.
33. Talbot-Smith A, Fritschi L, Divitini ML, Mallon DF, Knuiman MW. Allergy, atopy, and cancer: a prospective study of the 1981 Busselton cohort. Am J Epidemiol. 2003;157:606-12.
34. McWhorter WP. Allergy and risk of cancer. A prospective study using NHANESI followup data. Cancer. 1988;62451-5.
35. Mills PK, Beeson WL, Fraser GE, Phillips RL. Allergy and cancer: Organ site-specific results from the Adventist health study. Am J Epidemiol. 1992;136:287-95.
36. Gonzalez-Perez A, Fernandez-Vidaurre C, Rueda A, Rivero E, Rodriguez LAG. Cancer incidence in a general population of asthma patients. Pharmacoepidemiol Drug Saf. 2006;15:131-8.
37. Koshiol J, Lam TK, Gridley G, Check D, Brown LM, Landgren O. Racial differences in chronic immune stimulatory conditions and risk of non-Hodgkin's lymphoma in veterans from the United States. J Clin Oncol. 2011;29:378-85.
38. Shadman M, White E, De Roos AJ, Walter RB. Associations between allergies and risk of hematologic malignancies: Results from the VITamins and lifestyle cohort study. Am J Hematol. 2013;88:1050-4.
39. Erber E, Lim U, Maskarinec G, Kolonel LN. Common immune-related risk factors and incident non-Hodgkin lymphoma: The multiethnic cohort. Int J Cancer. 2009;125:1440-5.
40. Hofmann JN, Hoppin JA, Lynch CF, et al. Farm characteristics, allergy symptoms, and risk of non-Hodgkin lymphoid neoplasms in the agricultural health study. Cancer Epidemiol Biomarkers Prev. 2015;24:587-94.
41. Wang J, Mack TM, Hamilton AS, et al. Common immune-related exposures/conditions and risk of non-hodgkin lymphoma: A case-control study of disease-discordant twin pairs. Am J Epidemiol. 2015;18:417-25.
42. Linet MS, Vajdic CM, Morton LM, et al. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: The interlymph non-hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014:26-40.
43. Holly EA, Lele C, Bracci PM, McGrath MS. Case-control study of non-Hodgkin's lymphoma among women and heterosexual men in the San Francisco Bay Area, California. Am J Epidemiol. 1999;150:375-89.
44. Holly EA, Bracci PM. Population-based study of non-Hodgkin lymphoma, histology, and medical history among human immunodeficiency virus-negative participants in San Francisco. Am J Epidemiol. 2003;158:316-27.
45. Grulich AE, Vajdic CM, Kaldor JM, et al. Birth order, atopy, and risk of non-Hodgkin lymphoma. J Natl Cancer Inst. 2005;97:587-94.
46. Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for Diffuse Large B-cell Lymphoma The interLymph non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014:15-25.
47. Becker N, de Sanjose S, Nieters A, et al. Birth order, allergies and lymphoma risk: Results of the European collaborative research project Epilymph. Leuk Res. 2007;31:1365-72.
48. Dikalioti SK, Chang ET, Dessypris N, et al. Allergy-associated symptoms in relation to childhood non-Hodgkin's as contrasted to Hodgkin's lymphomas: A case-control study in Greece and meta-analysis. Eur J Cancer. 2012;48:1860-6.
49. Bracci PM, Dalvi TB, Holly EA. Residential history, family characteristics and non-Hodgkin lymphoma, a population-based case-control study in the San Francisco Bay Area. Cancer Epidemiol Biomarkers Prev. 2006;15:1287-94.
50. Briggs NC, Levine RS, Brann EA. Allergies and risk of non-Hodgkin's lymphoma by subtype. Cancer Epidemiol Biomarkers Prev. 2002;1ו:401-7.
51. Söderberg KC, Hagmar L, Schwartzbaum J, Feychting M. Allergic conditions and risk of hematological malignancies in adults: A cohort study. BMC Public Health. 2004;4
52. Melbye M, Smedby KE, Lehtinen T, et al. Atopy and risk of non-hodgkin lymphoma. J Natl Cancer Inst. 2007;99:158-66.
53. Vineis P, Crosignani P, Sacerdote C, et al. Haematopoietic cancer and medical history: a multicentre case control study. J Epidemiol Community Health. 2000;54:431-6.
54. Mbulaiteye SM, Morton LM, Sampson JN, et al. Medical history, lifestyle, family history, and occupational risk factors for sporadic Burkitt lymphoma/leukemia: The InterLymph non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014:106-14.
55. La Vecchia C, Negri E, Franceschi S. Medical history and the risk of non-Hodgkin's lymphomas. Cancer Epidemiol Biomarkers Prev. 1992;1:533-6
56. Hollander P, Rostgaard K, Smedby KE, et al. Autoimmune and atopic disorders and risk of classical hodgkin lymphoma. Am J Epidemiol. 2015;182:624-32.
57. Cozen W, Cerhan JR, Martinez-Maza O, et al. The effect of atopy, childhood crowding, and other immune-related factors on non-Hodgkin lymphoma risk. Cancer Causes Control. 2007;18:821-31.
58. Bernstein L, Ross RK. Prior medication use and health history as risk factors for non-Hodgkin's lymphoma: Preliminary results from a case-control study in Los Angeles County. Cancer Res. 1992;52:5510s-5s.
59. Becker N, Deeg E, Rüdiger T, Nieters A. Medical history and risk for lymphoma: Results of a population-based case-control study in Germany. Eur J Cancer. 2005;41:133-42.
6o. Chang JS, Tsai YW, Tsai CR, Wiemels JL. Allergy and risk of childhood acute lymphoblastic leukemia: A population-based and record-based study. Am J Epidemiol. 2012;176:970-8.
60. Gallagher RP, Spinelli JJ, Elwood JM, Skippen DH. Allergies and agricultural exposure as risk factors for multiple myeloma. Br J Cancer. 1983;48:853-7.
61. Wang HC, Lin HL, Shao N, Zhang JR, Zou J, Ji CY. Family history and prior allergies of cancers and the risk of adult leukemia in shandong province, china. Iran J Public Health. 2012;41:9-16.
62. Linabery AM, Prizment AE, Anderson KE, Cerhan JR, Poynter JN, Ross JA. Allergic diseases and risk of hematopoietic malignancies in a cohort of postmenopausal women: A report from the lowa women's health study. Cancer Epidemiol Biomarkers Prev. 2014;23:1903-12.
63. Spector L, Groves F, DeStefano F, et al. Medically recorded allergies and the risk of childhood acute lymphoblastic leukaemia. Eur J Cancer. 2004;40:579-84
64. Dalamaga M, Petridou E, Cook FE, Trichopoulos D. Risk factors for myelodysplastic syndromes: A case-control study in Greece. Cancer Causes Control. 2002;13:603-8.
65. Rudant J, Orsi L, Menegaux F, et al. Childhood acute leukemia, early common infections, and allergy: The ESCALE study. Am J Epidemiol. 2010;172:1015-27.
66. Petridou E, Trichopoulos D, Kalapothaki V, et al. The risk profile of childhood leukaemia in Greece: A nationwide case-control study. Br J Cancer. 1997;76:1241-7.
67. Nunez-Enriquez JC, Fajardo-Gutierrez A, Buchan-Duran EP, et al. Allergy and acute leukaemia in children with Down syndrome: a population study Report from the Mexican inter-institutional group for the identification of the causes of childhood leukaemia. Br J Cancer. 2013;108:2334-8.
68. Linabery AM, Li W, Roesler MA, et al. Immune-related conditions and acute leukemia in children with down syndrome: A children's oncology group report. Cancer Epidemiol Biomarkers Prev. 2015;24:454-8.
69. Ming ME, Levy R, Hoffstad O, et al. The lack of a relationship between atopic dermatitis and nonmelanoma skin cancers. J Am Acad Dermatol. 2004;50:357-62.
70. Cheng J, Zens MS, Duell E, Perry AE, Chapman MS, Karagas MR. History of allergy and atopic dermatitis in relation to squamous cell and basal cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2015;24:749-54.
71. Jensen AO, Svaerke C, Kormendine Farkas D, Olesen AB, Kragballe K, Sorensen HT. Atopic dermatitis and risk of skin cancer: a Danish nationwide cohort study (1977-2006). Am J Clin Dermatol. 2012;13:29-36.
72. Ji J, Shu X, Li X, Sundquist K, Sundquist J, Hemminki K. Cancer risk in hospitalised asthma patients. $\mathrm{Br} J$ Cancer. 2009;100:829-33.
73. Hwang CY, Chen YJ, Lin MW, et al. Cancer risk in patients with allergic rhinitis, asthma and atopic dermatitis: A nationwide cohort study in Taiwan. Int J Cancer. 2012;130:1160-7.
74. Kallen B, Gunnarskog J, Conradson TB. Cancer risk in asthmatic subjects selected from hospital discharge registry. Eur Respir J. 1993;6:694-7.
75. Marasigan V, Morren MA, Lambert J, et al. Inverse association between atopy and melanoma: A case-control study. Acta Derm -Venereol. 2017;97:54-7.
76. Eriksson NE, Holmen A, Hogstedt B, Hagmar L. A prospective study of cancer incidence in a cohort examined for allergy. Allergy Eur J Allergy Clin Immunol. 1995;50:718-22.
77. Vesterinen E, Pukkala E, Timonen T, Aromaa A. Cancer incidence among 78,000 asthmatic patients. Int J Epidemiol. 1993;22:976-82.
78. Tambe NA, Wilkens LR, Wan P, et al. Atopic allergic conditions and colorectal cancer risk in the multiethnic cohort study. Am J Epidemiol. 2015;181:889-97.
79. Prizment AE, Folsom AR, Cerhan JR, Flood A, Ross JA, Anderson KE. History of allergy and reduced incidence of colorectal cancer, lowa women's health study. Cancer Epidemiol Biomarkers Prev. 2007;16:2357-62.
80. Turner MC, Chen Y, Krewski D, Ghadirian P, Thun MJ, Calle EE. Cancer mortality among US men and women with asthma and hay fever. Am J Epidemiol. 2005;162:212-21.
81. Jacobs EJ, Gapstur SM, Newton CC, Turner MC, Campbell PT. Hay fever and asthma as markers of atopic immune response and risk of colorectal cancer in three large cohort studies. Cancer Epidemiol Biomarkers Prev. 2013;22:661-9.
82. Bosetti C, Talamini R, Franceschi S, Negri E, Giacosa A, La Vecchia C. Allergy and the risk of selected digestive and laryngeal neoplasms. Eur J Cancer Prev. 2004;13:173-6.
83. Negri E, Bosetti C, La Vecchia C, Levi F, Tomei F, Franceschi S. Allergy and other selected diseases and risk of colorectal cancer. Eur J Cancer. 1999;35:1838-41.
84. La Vecchia C, D'Avanzo B, Negri E, Franceschi S. History of selected diseases and the risk of colorectal cancer. Eur J Cancer. 1991;27:582-6.
85. Vena JE, Bona JR, Byers TE, Middleton E, Jr., Swanson MK, Graham S. Allergy-related diseases and cancer: an inverse association. Am Epidemiol. 1985;122:66-74.
86. Talbot-Smith A, Fritschi L, Divitini ML, Mallon DFJ, Knuiman MW. Allergy, atopy, and cancer: A prospective study of the 1981 Busselton cohort. Am J Epidemiol. 2003;157:606-12.
87. Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res. 1988;48:4399-404.
88. Cotterchio M, Lowcock E, Hudson TJ, Greenwood C, Gallinger S. Association between allergies and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2014;23:469-80.
89. Holly EA, Eberle CA, Bracci PM. Prior history of allergies and pancreatic cancer in the San Francisco Bay Area. Am J Epidemiol. 2003;158:432-41.
90. Maisonneuve P, Lowenfels AB, Bueno-de-Mesquita HB, et al. Past Medical History and Pancreatic Cancer Risk: Results From a Multicenter Case-Control Study. Ann Epidemiol. 2010;20:92-8.
91. Olson SH, Orlow I, Simon J, et al. Allergies, variants in IL-4 and IL-4R? genes, and risk of pancreatic cancer. Cancer Detect Prev. 2007;31:345-51.
92. Santibañez M, Rorke MO, Leary EO. Allergies, asthma and the risk of pancreatic cancer: A population-based case-control study in Ireland. Eur Res J. 2015;46:PA3389.
93. Silverman DT, Schiffman M, Everhart J, et al. Diabetes mellitus, other medical conditions and familial history of cancer as risk factors for pancreatic cancer. Br J Cancer. 1999;80:1830-7.
94. Dai Q, Zheng W, Ji BT, et al. Prior immunity-related medical conditions and pancreatic-cancer risk in Shanghai. Int J Cancer. 1995;63:337-40.
95. Hemminki K, Försti A, Fallah M, Sundquist J, Sundquist K, Ji J. Risk of cancer in patients with medically diagnosed hay fever or allergic rhinitis. Int J Cancer. 2014;135:2397-403.
96. Lightfoot N, Conlon M, Kreiger N, Sass-Kortsak A, Purdham J, Darlington G. Medical history, sexual, and maturational factors and prostate cancer risk. Ann Epidemiol. 2004;14:655-62.
97. Weiss D, EI-Zein M, Rousseau MC, Richard H, Karakiewicz PI, Parent ME. Asthma, allergy and the risk of prostate cancer: results from the Montreal PROtEuS study. Cancer Epidemiol. 2014;38:695-9.
98. Severi G, Baglietto L, Muller DC, et al. Asthma, asthma medications, and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2010;19:2318-24.
100.Gloria-Bottini F, Ammendola M, Saccucci P, et al. Allergy and uterine leiomyomas: Cooperative interaction with ACP_{1} genetic polymorphism. J Reprod Infertil. 2015;16:199-202.
99. Johnson LG, Schwartz SM, Malkki M, et al. Risk of cervical cancer associated with allergies and polymorphisms in genes in the chromosome 5 cytokine cluster. Cancer Epidemiol Biomarkers Prev. 2011;20:199-207.
100. Montgomery SM, Ehlin AG, Sparen P, Bjorksten B, Ekbom A. Childhood indicators of susceptibility to subsequent cervical cancer. Br J Cancer. 2002;87:989-93.
101. Reynolds P, Kaplan GA. Asthma and cancer. Am J Epidemiol. 1987;125:539-40.
104.Huovinen E, Kaprio J, Vesterinen E, Koskenvuo M. Mortality of adults with asthma: A prospective cohort study. Thorax. 1997;52:49-54.
102. Pirie K, Peto R, Green J, Reeves GK, Beral V, Million Women Study C. Lung cancer in never smokers in the UK Million Women Study. Int J Cancer. 2016;139:347-54.
103. Huang JY, Jian ZH, Nfor ON, et al. The effects of pulmonary diseases on histologic types of lung cancer in both sexes: a population-based study in Taiwan. BMC Cancer. 2015;15:834.
104. Colak Y, Afzal S, Nordestgaard BG, Lange P. Characteristics and Prognosis of Never-Smokers and Smokers with Asthma in the Copenhagen General Population Study. A Prospective Cohort Study. Am J Respir Crit Care Med. 2015;192:172-81.
108.Alderson M. Mortality from malignant disease in patients with asthma. Lancet. 1974;2:1475-7.
109.El-Zein M, Parent ME, Siemiatycki J, Rousseau MC. History of allergic diseases and lung cancer risk. Ann Allergy Asthma Immunol. 2014;112:230-6.
105. McDuffie HH. Atopy and primary lung cancer: Histology and sex distribution. Chest. 1991;99:404-7.
1ו1. McDuffie HH, Cockcroft DW, Talebi Z, Klaassen DJ, Dosman JA. Lower prevalence of positive atopic skin tests in lung cancer patients. Chest. 1988;93:241-6.
106. Seow A, Ng DPK, Choo S, et al. Joint effect of asthma/atopy and an IL-6 gene polymorphism on lung cancer risk among lifetime non-smoking Chinese women. Carcinogenesis. 2006;27:1240-4.
107. Chung SD, Wu CS, Lin HC, Hung SH. Association between allergic rhinitis and nasopharyngeal carcinoma: A population-based study. Laryngoscope. 2014;124:1744-9.
108. Lin KT, Huang WY, Lin CC, et al. Subsequent risk of nasopharyngeal carcinoma among patients with allergic rhinitis: A nationwide populationbased cohort study. Head Neck. 2015;37:413-7.
109. Hsiao JR, Ou CY, Lo HI, et al. Allergies and Risk of Head and Neck Cancer: An Original Study plus Meta-Analysis. PLoS ONE. 2013;8(2).
110. Liao HC, Wu SY, Ou CY, et al. Allergy symptoms, serum total immunoglobulin E, and risk of head and neck cancer. Cancer Causes Control. 2016;27:1105-15.
111. Michaud DS, Langevin SM, Eliot M, et al. Allergies and risk of head and neck cancer. Cancer Causes Control. 2012;23:1317-22.
112. Lupo PJ, Zhou R, Skapek SX, et al. Allergies, atopy, immune-related factors and childhood rhabdomyosarcoma: A report from the children's oncology group. Int J Cancer. 2014;134:431-6.
113. Menegaux F, Olshan AF, Neglia JP, Pollock BH, Bondy ML. Day care, childhood infections, and risk of neuroblastoma. Am J Epidemiol. 2004;159:843-51.
114. Rosato V, Bosetti C, Dal Maso L, et al. Medical conditions, family history of cancer, and the risk of biliary tract cancers. Tumori. 2015:0.
115. Schoemaker MJ, Swerdlow AJ, Auvinen A, et al. Medical history, cigarette smoking and risk of acoustic neuroma: An international case-control study. Int J Cancer. 2007;120:103-10.
116. Stott-Miller M, Chen C, Doody DR, et al. A history of allergies is associated with reduced risk of oral squamous cell carcinoma. Cancer Causes Control. 2012;23:19119.
117. Goedert JJ, Vitale F, Lauria C, et al. Risk factors for classical Kaposi's sarcoma. J Natl Cancer Inst. 2002;94:1712-8.
124.Allegra J, Lipton A, Harvey H. Decreased prevalence of immediate hypersensitivity (atopy) in a cancer population. Cancer Res. 1976;36:I.
118. Fisherman EW. Does the allergic diathesis influence malignancy? Journal of Allergy. 1960.
119. Kozlowska R, Bozek A, Jarzab J. Association between cancer and allergies. Allergy Asthma Clin Immunol. 2016;12(1).
120. McKee WD, Arnold CA, Perlman MD. A double-blind study of the comparative incidence of malignancy and allergy. J Allergy. 1967;39:294-301.
121. Pompei R, Lampis G, Ingianni A, Nonnis D, Ionta MT, Massidda B. Allergy and Tumour Outcome after Primary Cancer Therapy. Int Arch Allergy Immunol. 2004;133:174-8.
122. Chae YK, Neagu S, Kim J, Smyrlis A, Gooptu M, Tester W. Association between Common Allergic Symptoms and Cancer in the NHANES III Female Cohort. PLoS One. 2012;7(9)
123. Skaaby T, Nystrup Husemoen LL, Roswall N, Thuesen BH, Linneberg A. Atopy and Development of Cancer: A Population-Based Prospective Study. J Allergy Clin Immunol Pract. 2014:779-85
124. Skaaby T, Husemoen LLN, Thuesen BH, Hammer-Helmich L, Linneberg A. Atopy and cause-specific mortality. Clin Exp Allergy. 2014;44:1361-70.
125. Hoste E, Cipolat S, Watt FM. Understanding allergy and cancer risk: what are the barriers? Nature Reviews Cancer. 2015.
126. Sherman PW, Holland E, Sherman JS. Allergies: their role in cancer prevention. Q Rev Biol. 2008;83:339-62.
127. Qu YL, Liu J, Zhang LX, al. Asthma and the risk of lung cancer: a meta-analysis. Oncotarget. 2017;8:11614-20.
128. Ballaz S, Mulshine JL. The potential contributions of chronic inflammation to lung carcinogenesis. Clin Lung Cancer. 2003;5:46-62.
129. Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 2008;11:1-15.
130. Karagiannis P, Gilbert AE, Josephs DH, et al. IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest. 2013;123:1457-74.
131. Karagiannis P, Gilbert AE, Nestle FO, Karagiannis SN. IgG4 antibodies and cancer-associated inflammation: Insights into a novel mechanism of immune escape. Oncoimmunology. 2013;2:e24889.
132. Wallace ZS, Wallace CJ, Lu N, Choi HK, Stone JH. Association of $\lg \mathrm{G}_{4}$-Related Disease With History of Malignancy. Arthritis Rheumatol. 2016;68:2283-9.
133. Trampert DC, Hubers LM, van de Graaf SFJ, Beuers U. On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochim Biophys Acta. 2017.
134. Cooper GS, Kamel F, Sandler DP, Davey FR, Bloomfield CD. Risk of adult acute leukemia in relation to prior immune-related conditions. Cancer Epidemiol Biomarkers Prev. 1996;5:867-72.
135. Doody MM, Linet MS, Glass AG, et al. Leukemia, lymphoma, and multiple myeloma following selected medical conditions. Cancer Causes Control. 1992;3:449-56.
136. Gramenzi A, Buttino I, D'Avanzo B, Negri E, Franceschi S, La Vecchia C. Medical history and the risk of multiple myeloma. Br J Cancer. 1991;63:769-72.
137. Hughes AM, Lightfoot T, Simpson J, et al. Allergy and risk of childhood leukaemia: Results from the UKCCS. Int J Cancer. 2007;121:819-24.
138. Landgren O, Zhang Y, Zahm SH, Inskip P, Zheng T, Baris D. Risk of multiple myeloma following medication use and medical conditions: A case-control study in Connecticut women. Cancer Epidemiol Biomarkers Prev. 2006;15:2342-7.
139. Lariou MS, Dikalioti SK, Dessypris N, al. Allergy and risk of acute lymphoblastic leukemia among children: A nationwide case control study in Greece. Cancer Epidemiol. 2013;37:146-51.
140. Rosenbaum PF, Buck GM, Brecher ML. Allergy and infectious disease histories and the risk of childhood acute lymphoblastic leukaemia. Paediatr Perinat Epidemiol. 2005;19:152-64.
141. Schüz J, Kaletsch U, Meinert R, Kaatsch P, Michaelis J. Association of childhood leukaemia with factors related to the immune system. Br J Cancer. 1999;80:585-90.
142. Schüz J, Morgan G, Böhler E, Kaatsch P, Michaelis J. Atopic disease and childhood acute lymphoblastic leukemia. Int J Cancer. 2003;105:255-60.
143. Severson RK, Davis S, Thomas DB, Stevens RG, Heuser L, Sever LE. Acute myelocytic leukemia and prior allergies. J Clin Epidemiol. 1989;42:995-1001.
144. Brown LM, Gridley G, Check D, Landgren O. Risk of multiple myeloma and monoclonal gammopathy of undetermined significance among white and black male United States veterans with prior autoimmune, infectious, inflammatory, and allergic disorders. Blood. 2008;111:3388-94.
145. Filippidis FT, Schwartz SM, Becker N, et al. Association of history of allergies and influenza-like infections with laryngeal cancer in a casecontrol study. Eur Arch Oto-Rhino-Laryngol. 2015;272:2063-9.
146. Frentzel-Beyme R, Becher H, Salzer-Kuntschik M, Kotz R, Salzer M. Factors affecting the incident juvenile bone tumors in an Austrian case-control study. Cancer Detect Prev. 2004;28:159-69.

Table 1. The association between allergies and cancers
Brain cancer, case control studies

Reference	Allergy	Type of cancer: statistical value (95\% CI)	Association	Comments
(10) Berg-Beckhoff	Any allergy (hay fever, eczema, asthma)	Glioma: OR 0.92 (0.70-I.22) Meningioma: OR 0.87 (0.66-I.I4)	No association	
(II) Brenner	Any allergy (hay fever, eczema, asthma)	Glioma: OR 0.67 (0.52-0.86), Meningioma: OR 0.98 (o.70-I.38)	Negative No association	
(17) Claus	Any allergy (not specified)	Meningioma OR 0.6 (0.-50.7)	Negative	
(18) Krishnamachari	Any allergy (allergies, asthma, eczema)	Glioma: OR 0.49 (0.43-0.57) Glioblastoma multiforme: OR 0.47 (0.40-0.55)	Negative	
(19) McCarthy	Any allergy (seasonal, medication, pet, food, not specified)	High grade glioma: OR 0.66 (0.49-0.87) Low grade glioma: OR 0.44 (0.25-0.76)	Negative	
(20) Ryan	Any allergy (not specified)	Glioma: RR 0.5 (0.3-0.9)	Negative	
(2I) Scheurer	Any allergy (asthma, allergy not specified)	Glioma: OR 0.34 (0.23-0.51)	Negative	Adjusted odds ratio for the use of antihistamines and anti-inflammatory agents among glioma cases and controls
(12) Schlehofer	Any allergy (asthma, eczema, allergy not specified)	All brain tumors: RR 0.7 I (0.5-1.0)	No association	
(23) Schoemaker	Any allergy (asthma, hay fever, eczema)	Glioma: OR 0.63 (0.53-0.76)	Negative	
(23) Schoemaker	Any allergy (asthma, hay fever, eczema)	Meningioma: OR 0.76 (0.6ז-0.96)	Negative	
(13) Shu	Any allergy (asthma, eczema, allergic rhinitis, wheezing)	All brain tumors: OR I.O3 (0.70-I.34), Glioma: OR ..I8 (0.84-І.67), Other brain tumors (PNET, other specified brain tumors, unspecified brain tumors: OR 0.82 (0.54-I.25)	No association	Study with adults and children.
(24) Turner	Any allergy (asthma, hay fever, eczema)	Glioma: OR 0.73 (0.60-0.88), Meningioma: OR 0.77 (0.63-0.93), Acoustic neuroma: OR 0.64 $(0.49-0.83)$	Negative	
(25) Wiemels	Any allergy (hay fever and food allergy)	Glioma: OR 0.47 (0.33-0.67)	Negative	
(26) Wiemels	Any allergy (hay fever and food allergy	Glioma: OR 0.50 (0.36-0.70)	Negative	
(27) Wiemels	Any allergy (not specified)	Meningioma: OR 0.64 (0.5I-0.80)	Negative	
(14) Wigertz	Any allergy (asthma, eczema, hay fever, food allergy, not specified)	Meningioma: OR 0.95 (0.82-I.IO)	No association	

(15) Il'yasova	Any allergy (hay fever, medication and food allergy)	Glioma: OR 0.53 (0.15-1.84)	No association	
(16) Roncarolo	Allergic asthma and eczema	Any brain cancer: OR 0.76 (0.18-3.2)	No association	Study in children
(28) Harding	Allergic asthma and eczema	Any brain cancer: OR 0.46 (0.28-0.8ㅇ)	Negative	Study in children. Reduced risk of malignancy in asthma and combination of asthma and eczema, no reduction of risk in eczema alone.
Breast cancer, case control studies				
Reference	Allergy	Statistical value (95\% CI)	Association	Comments
(30) Hedderson	Any allergy (hay fever, drug reaction, insect venom, food)	Breast cancer in women aged 35 years or older: OR 0.77 (0.60-0.99), Breast cancer in women younger than 35: OR I. 30 (0.94-I.8I)	Negative No association	
(3I) Lowcock	Any allergy (hay fever, not specified)	Breast cancer: OR 0.86 (0.77-0.96)	Negative	
(32) Wang	Any allergy (asthma, hay fever, atopic dermatitis)	Breast cancer: OR I. 20 (0.87-1.66)	No association	
(29) Eriksson	Atopy (confirmed with skin prick test)	Breast cancer: OR 2.50 (1.OI-5.16)	Positive	
(33) Talbot-Smith	Any atopy	Breast cancer: OR I. 44 (0.6I-3.4I)	No association	
(34) McWhorter	Any allergy	Breast cancer: OR I. 20 (0.60-2.43)	No association	
(35) Mills	Any allergy	Breast cancer: OR I. 23 (0.94-I.63)	No association	
(36) Gonzalez-Perez	Asthma	Breast cancer: OR 0.91 (0.78-I.06)	No association	Adjusted for age/sex/calendar year/BMI/ alcohol/smoking/prior comorbidities/health services utilization/aspirin/NSAID/ paracetamol
Lymphatic and hematopoietic cancer, case control studies				
Reference	Allergy	Cancer type: statistical value ($95 \% \mathrm{CI}$)	Association	Comments
(47) Becker	Hay fever and asthma; Food allergy	Lymphoma: OR o. 86 (0.73-1.01); Lymphoma: OR 0.67 (0.52-0.85)	No association; Negative	
(59) Becker	Any allergy (not specified)	Lymphoma: OR 0.85 (0.68-I.07)	No association	
(58) Bernstein	Allergy to nuts and berries; Insect bites allergy	NHL: OR 0.70 (0.46-1.05), NHL: OR o. 68 (o.44-I.04)	No association	
(49) Bracci	Allergic rhinitis	NHL: OR 0.70 (0,60-0.83)	Negative	
(46) Cerhan	Any allergy (excluding drug allergies)	DLBCL: OR 0.82 (0.76-0.89)	Negative	Pooled analysis from is InterLymph studies

(60) Chang	Any allergy (hay fever, asthma, atopic dermatitis, anaphylaxis and unspecified allergy)	ALL: OR I. 7 (土.5-2.0): in cases of having an allergy less than one year before ALL diagnosis, ALL: OR I. 3 (I.I-I.5): having an allergy more than one year before ALL diagnosis, ALL: OR I. 4 (I.I- I.7): having allergy before the age of one year.	Positive	Childhood ALL
(148) Cooper	Any allergy	AML: OR I. 24 (0.88-1.73), ALL: OR 0.6I (0.30-1.25)	No association	
(57) Cozen	Any allergy (hay fever, food, animal, insect, dust, medication allergies)	NHL: OR 0.9 (0.7-1.2), DLBCL: OR 0.9 (o.6-I.3), FBCL: OR 0.8 (0.5-I.2)	No association	
(149) Doody	Hay fever; Eczema	Leukemia: OR I. 2 (0.7-2.0); Leukemia: OR o. 6 (0.4-I.I)	No association	Leukemia: AML, CML, AUL, CLL Statistical value for MM, NHL, and the above separately
(6I) Gallagher	Any allergy (not specified)	MM: RR 3.I, $\mathrm{p}<0.00 \mathrm{I}$	Positive	Myeloma patients described the symptoms mainly as skin rashes, swellings and hives.
(150) Gramenzi	Any allergy (drug and food allergies, asthma, eczema)	MM: RR 0.6 (0.3-I.0)	No association	
(45) Grulich	Hay fever; Food allergies	NHL: OR 0.65 (0.52-0.82); NHL: OR 0.29 (0.20-0.42)	Negative	
(56) Hollander	Allergic rhinitis	HL: OR 0.8I (0.64-І.03)	No association	
(44) Holly	Allergy to plants; Animal allergies	Diffuse large cell: OR 0.72 (0.55-0.94); Diffuse large cell: OR 0.40 (0.2I-0.73)	Negative; Negative	
(43)Holly	Plant allergies	NHL: OR 0.60 (0.48-0.75)	Negative	
(66) Hughes	Hay fever	ALL: 0.47 (0.26-0.85)	Negative	
(55) La Vecchia	Any allergy (drug, food, asthma eczema)	NHL: RR 1.0 (0.6-2.I)	No association	
(67) Landgren	Any allergy (not specified)	MM: OR 0.4 (0.3-0.7)	Negative	
(70) Lariou	Any allergy (respiratory, food, not specified)	ALL: OR 0.49 (0.34-0.72)	Negative	Patient population: children
(73) Linabery	Any allergy (inhaled, food, medication and contact allergies)	ALL: OR 0.84 (o.38-т.85), AML: OR 3.89 (0.50-29.95)	No association	Patient population: children with Down syndrome
(42) Linet	Any allergy (asthma, eczema, hay fever, not specified, excluding drug allergies)	Follicular lymphoma: OR 0.87 (0.80-0.94)	Negative	
(54) Mbulaiteye	Any atopic condition	SBL: Age < 50 years: OR o. 68 (0.45-I.02), Age > 50 years: OR 0.94 (0.64-I.37)	No association	

(74) Nunez-Enriquez	Any allergy (skin allergy, bronchial asthma, rhinitis, not specified)	ALL: 0.69 (0.40-I.I7)	No association	Patient population: children with Down syndrome
(71) Petridou	Allergic disease (not specified)	Leukemia: OR 0.36 (0.09-I.43)	No association	Childhood leukemia
(151) Rosenbaum	Any allergy (hay fever, asthma, animal, food-drugbee, eczema)	ALL: OR 0.58 (0.38-0.88)	Negative	Childhood ALL
(68) Schuz	Any allergy (not specified)	AL: OR 0.6 (0.5-0.8)	Negative	
(72) Schuz	Hay fever	ALL: OR 0.45 (0.3I-0.66), AML: OR I. 02 (0.50-2.08)	Negative, No association	Childhood leukemia
(69) Severson	Any allergy (not specified)	AML: OR 0.35 (0.20-0.60)	Negative	
(62) Wang	Any allergy (asthma, hay fever, food or drug allergies, and eczema)	Leukemia: OR 2.09 (1.22-3.58)	Positive	
(41) Wang	Any allergy (hay fever, animal or egg allergy, plant allergy, asthma, eczema)	NHL: OR 0.31 (0.15-0.64)	Negative	
(48) Dikalioti	Any allergy	NHL: OR 0.50 (0.27-0.29)	Negative	Childhood NHL
(53) Vineis	Any allergy	NHL: 0.9 (0.7-I.3) Hodgkin's disease: 0.9 (0.5-1.4), LL: OR I.o (o.6-1.6), ML: OR 0.7 (०.4-І.2)	No association for all listed	
Lymphatic and hematopoietic cancer, cohort studies				
(39) Erber	Any allergy (asthma, hay fever, skin, food or not specified)	NHL: HR I. 46 (1.07-2.00): Latinos NHL: HR I.I7 (0.90-1.52): Caucasian NHL: HR o. 86 (o.58-1.27): African American NHL: HR I. 02 (0.75-I.38): Japanese American	Positive, No association, No association, No association	
(40) Hofmann	Any allergy (hay fever, eczema)	NHL: HR 0.6I (0.42-0.87)	Negative	
(63) Linabery	Any allergy (not specified)	Asthma: MDS HR 2.17 (I.OI-4.64) No significant association between allergy and lymphoid and myeloid malignancies	Positive	Large study among post-menopausal Caucasian women
(52) Melbye	Any allergy (not specified)	NHL: OR 0.74 (0.48-1.15)	No association	
(34) McWhorter	Any allergy	Leukemia, lymphoma, or myeloma OR 3.84 (․ $55-9.5$ I)	Positive	
(35) Mills	Any allergy (hay fever, asthma, plant allergy, bee allergy	Lymphoma: OR I.7I (0.95-3.09), Leukemia: OR I. 35 (0.75-2.46), Myeloma: OR .67 (0.70-4.00)	No association	
(33) Talbot-Smith	Any allergy (asthma, hay fever)	Leukemia: OR I.32(0.08-2I.54), Lymphoma: OR 0.52 (0.05-5.77)	No association	

(51) Soderberg	Any allergy (asthma, hay fever, eczema during childhood or allergic eczema)	Leukemia: RR I.I (o.8-I.7), Myeloma: RR 0.7 (0.4-I.4), NHL: RR I.3 (o.8-2.0)	No association	
(38) Shadman	Allergies to airborne antigens	Mature B-cell lymphoma: HR I. 47 (I.14-I.9I)	Positive	Patients who developed malignancies were older (p < o.ooi) and a moderate risk for lymphoma was seen in women, but not in men.
(37) Koshiol	Any allergy (rhinitis, asthma, dermatitis, erythema, allergic alveolitis)	NHL: OR I. 4 (1.3-1.5)	Positive	Increased risk especially in patients with allergic alveolitis and dermatitis. Furthermore, the risk was slightly higher in black than white patients.
(75) Rudant	Allergic asthma	ALL: OR 0.7 (0.4-I.O)	No association	Childhood ALL
(50) Briggs	Any allergy	NHL: OR I.O (0.8-1.2)	No association	
(64) Spector	Atopy	Early onset atopy and ALL: OR 2.20 (I.16-4.16), Late onset atopy and ALL: OR 3.78 (1.00-14.29)	Positive, No association	Association between allergic diseases and ALL in children
(65) Dalamaga	Any allergy	MDS: OR 3.50 (1.19-Io.26)	Positive	
Lymphatic and hematopoietic cancer, retrospective studies				
(152) Brown	Allergic rhinitis; Asthma; Erythema	MM: RR I. 45 (0.93-2.25); MM: RR 0.98 (0.79-I.22); MM: RR I. 03 (0.72-I.48)	No association	
Skin cancer, case control studies				
Reference	Allergy	Statistical value (95\% CI)	Association	Comments
(78) Cheng	Any allergy (animal, insect sting, food, plant, mold, and dust)	Early onset: BCC: OR: 0.6I (0.38-0.97), Early onset: SCC: OR: 1.I8 (0.78-I.79)	Negative, No association	
(77) Jensen	Atopic dermatitis	Melanoma: SIR 0.46 (0.19- 0.95), BCC: SIR I.4I (土.07-1.83), SCC: SIR 2.48 (I.००, 5.II)	Negative, Positive, No association	
(76) Ji	Asthma	Melanoma: SIR 0.84 (0.7I-0.99), SCC: SIR I. 33 (I.I9, I.48)	Negative, Positive	
(79) Ming	Atopic dermatitis	NMSC OR 0.78 (0.6I-0.98)	Negative	
(80) Hwang	Allergic rhinitis; Asthma; Atopic dermatitis	Melanoma: SIR 0.89 (0.36-1.84), NMSC SIR 0.40 (0.28-0.56); Melanoma: SIR I. 32 (0.63-2.43), NMSC: SIR 0.39 (0.27-0.54); Melanoma: SIR 2.35 (0.26-8.47), NMSC: SIR 0.75 (0.30-I.54)	No association, Negative; No association, Negative; No association, No association	
(8) Kallen	Allergic asthma	Melanoma: SMR 34 (26.3-44-4), Other skin cancers: SMR 76 (65.2-87.7)	Negative, Negative	
(82) Marasigan	Any allergy (atopic dermatitis, asthma, hay fever)	Melanoma: $\text { OR: } 0.53 \text { (0.30-0.96) }$	Negative	

| Colorectal cancer, cohort studies | Cancer type: statistical value | Association | Comments |
| :--- | :--- | :--- | :--- | :--- |
| Reference | Allergy | (95\% CI) | |

(80) Hwang	Asthma; Allergic rhinitis	Colon cancer: SIR I.OO (о.88-1.13), SIR Men: 0.83 (0.69-0.99), SIR Women: I. 24 (土.03-1.47), Rectal cancer: SIR o. 86 (०.73-1.0I); Colon cancer: SIR I. 02 (0.90-1.15), SIR Men: 0.93 (0.78-I.Io), SIR Women: I.I4 (0.94-I.37), Rectal cancer: SIR 0.82 (0.69-0.97)	No association, Negative, Positive, No association (both sexes); No association, No association, No association, Negative (both sexes)	
(92) Vena	Asthma; Hay fever; Asthma; Hay fever	Colon: Men OR I.33, women OR 0.6I; Colon cancer: Men OR I.27, women OR i.oo; Rectal cancer: Men OR 0.60, women OR o.82; Rectal cancer: Men OR I.22, women OR 0.6I	Negative	95\% CI not included.
Pancreatic cancer, case control studies				
Reference	Allergy	Statistical value (95\% CI)	Association	Comments
(95) Cotterchio	Atopy	MVOR 0.66 (0.5I-0.85)	Negative	
(9) Eppel	Any allergy (hay fever, not specified)	AOR 0.43 (0.29-0.63)	Negative	
(96) Holly	Any allergy (not specified)	OR 0.77 (0.63-0.95)	Negative	
(97) Maisonneuve	Any allergy (asthma, eczema, hay fever, not specified)	OR 0.64 (0.50-0.82)	Negative	
(98) Olson	Any allergy	OR 0.58 (0.40-0.84)	Negative	Hay fever and animal allergies were related to lower risk. No association between other allergies and asthma
(99) Santibanez	Nasal allergies (including hay fever)	OR 0.56 (0.32-0.99)	Negative	
(100) Silverman	Any allergy (hay fever, asthma, eczema, animal allergy, insect bite/sting allergy, dust or mold allergy, drug allergy, household products	OR 0.7 (0.5-0.9)	Negative	
(Ior) Dai	Any allergy	OR 0.6 (0.4-I.I).	No association	
Pancreatic cancer, cohort studies				
(87) Turner	Hay fever	OR 0.84 (0.7I-I.OO)	No association	No association between asthma and pancreas cancer or asthma/hay fever and pancreas cancer
(102) Hemminki	Hay fever/allergic rhinitis	OR 0.87 (0.58-1.26)	No association	
Urogenital cancers, case control studies				
Reference	Allergy	Cancer types: statistical value $(95 \% \mathrm{CI})$	Association	Comments
(106) Gloria-Bottini	Any allergy (asthma, rhinitis and AEDS (Atopic Eczema/Dermatitis Syndrome)	Uterine leiomyomas	Negative	Uterine leiomyomas is lower in allergic than non-allergic women ($\mathrm{p}<0.004$)

(107) Johnson	Any allergy (not specified)	Squamous cell cervical cancer: OR 0.7 (0.6-0.9)	Negative	
(103) Lightfoot	Any allergy (not specified)	Prostate cancer: OR 0.78 (o.6o-1.00)	No association	
(32) Wang	Any allergy (asthma, hay fever, atopic dermatitis)	Prostate cancer: OR 0.98 (o.66-I.45)	No association	
(104) Weiss	Any allergy (hay fever, medication, food, dust, animals)	Prostate cancer: OR 0.98 (0.84-I.I4)	No association	
(36) Gonzalez-Perez	Asthma	Prostate cancer: OR 0.86 (0.69-1.07)	No association	Estimates are adjusted for age, sex, calendar year, BMI, alcohol intake, smoking status, prior comorbidities (cardiovascular disease, diabetes, osteoarthritis, and rheumatoid arthritis), health services utilization, use of aspirin, NSAID, and paracetamol using logistic regression.
Urogenital cancers, cohort studies				
(108) Montgomery	Hay fever	Cervical cancer: OR I. 04 (0.50-2.17)	No association	
(33) Talbot-Smith	Atopy	Prostate cancer: OR 2.25 (0.94-5.47)	No association	Adjusted for age, smoking status, and body mass index.
(34) McWhorther	Any allergy	Prostate cancer: OR I. 32 (0.62-2.80)	No association	Adjusted for smoking, age and race.
(35) Mills	Any allergy (hay fever, asthma, bee sting, medication)	Prostate cancer: OR 1.25 (0.93-I.69)	No association	Adjusted for smoking and age
(87) Turner	Asthma and hay fever	Prostate cancer: OR i.O6 (0.74-I.53); Ovarian cancer: OR 0.93 (०.60-1.45)	No association; No association	
(102) Hemminki	Hay fever/allergic rhinitis	Prostate cancer: SIR I.I8 (土.06-t.30), Cervix cancer: SIR 0.99 (0.73-I.32), Ovarian cancer: SIR 0.98 (0.74-I.27)	Positive, No association, No association	
(81) Kallen	Asthma	Prostate cancer: SMR 72 (66.7-77.6), Cervix cancer: SMR 52 (38.9-69.1), Ovarian cancer: SMR 52 (42.I-63.I)	Negative, Negative, Negative	
(76) Ji	Asthma	Prostate cancer: SIR I. 28 (I.20-I.36), Cervix cancer SIR I. 34 (I.07-1.66), Ovarian cancer SIR 0.92 (0.76-I.I2)	Positive, Positive, No association	
(105) Severi	Asthma	Prostate cancer: HR i. 25 (土.05-I.49)	Positive	Adjusted for age, country of birth, education, body mass index, fat and fat-free mass, smoking, alcohol consumption, and total energy intake.

Lung cancer, case control studies				
Reference	Allergy	Statistical value (95\% CI)	Association	Comments
(1i5) El-Zein	Asthma Eczema Hay fever	OR 0.90 (0.65-I.24); OR 0.73 (0.48-I.I2); OR 0.37 (0.24-0.59)	No association; No association; Negative	Adjusted for age, sex, education, respondent status, ethnocultural origin, fruit and vegetable consumption and smoking.
(1ı6) McDuffie	Any allergy (house dust mite, animals, mixed molds, mixed weed pollen, mixed tree pollen, mixed grass pollen)	OR 0.58 (0.37-0.91)	Negative	
(iı7) McDuffie	Any allergy (house dust mite, mixed grain dust, mixed animal dander, mixed molds, mixed weed pollen, mixed tree pollen, mixed grass pollen)	-	Negative	The study used seven common allergens for allergy skin prick test. Historic evidence of allergy was greater in both control groups compared to the cancer groups.
(iI8) Seow	Any allergy (asthma, allergic rhinitis, atopic dermatitis)	All histological types: OR I. 5 (o.8-2.6), Adenocarcinoma: OR I. 6 (0.9-3.I)	No association	Study population: non-smoking Chinese women
(32) Wang	Any allergy (asthma, hay fever, atopic dermatitis)	OR 0.85 (0.50-1.47)	No association	
(36) Gonzalez-Perez	Asthma	OR I. 35 (1.15-I.59)	Positive	Estimates are adjusted for age, sex, calendar year, BMI, alcohol intake, smoking status, prior comorbidities (cardiovascular disease, diabetes, osteoarthritis, and rheumatoid arthritis), health services utilization, use of aspirin, NSAID, and paracetamol using logistic regression.
Lung cancer, cohort studies				
(35) Mills	Any allergy (hay fever, asthma, bee sting, medication)	OR 1. 02 (0.60-1.72)	No association	In cases of asthma alone, the association with lung cancer was also positive. Adjusted for age, sex, smoking history, and time since last physician contact.
(102) Hemminki	Hay fever/allergic rhinitis	SIR 0.78 (0.64-0.93)	Negative	
(8I) Kallen	Asthma	All respiratory tract cancers: SMR IO5 (97.0-II3.4)	Positive	
(76) Ji	Asthma	SIR I. 76 (1.63-1.90)	Positive	
(II4) Alderson	Asthma	OR 0.80 (0.4I-I.56)	No association	Covariants are not mentioned.
(109) Reynolds	Asthma	Men: relative risk incidence lung cancer is RR 6.3 and mortality is RR 5.3; Women: relative risk incidence lung cancer is RR I.2.	Positive in men	Adjusted for gender and smoking.
(84) Vesterinen	Asthma	Men: SIR I. 32 (土.22-I.43), Women: SIR i. 66 (土.39-1.98)	Positive	Covariants are not mentioned.
(1IO) Huovinen	Asthma	Men: HR 3.19 (1.39-7.31)	Positive	Risk of mortality due to lung cancer. Adjusted for age and smoking

（87）Turner	Asthma and hay fever	Only hay fever： RR 0.85 （0．80－0．90）； Only asthma： RR I．II（I．02－I．20）； Asthma and hay fever： RR 0.73 （0．65－0．83）	Negative； Positive； Negative	Lung cancer mortality．Adjusted for gender，race，smoking，education， marital status，body mass index， diabetes，exercise，alcohol drinking， aspirin use，vegetable intake，and fat intake．
（III）Pirie	Asthma	Women：RR i． 32 （土．Io－I．58）	Positive	Non－smoker women． Adjusted for age，region，deprivation quintile，height．
（1i2）Huang	Asthma	Men：HR I． 36 （I．30－I．4I）， Women：I． 26 （土．18－І．34）	Positive	Adjusted for lung diseases，low income，age，comorbidities， urbanization and geographic area
（iI3）Colak	Asthma	Never smokers with asthma： HR 0．6（0．I－5．I）， Former smokers with asthma HR 4.0 （I．3－12）， Current smokers with asthma HR I3（4．3－4I）	No association， Positive， Positive	Adjusted for age，sex，BMI，allergy， familial predisposition for asthma， childhood asthma，hay fever，or eczema．
（33）Talbot－Smith	Asthma，hay fever or any atopy	Risk of lung cancer Men： Asthma：HR I．I8（0．15－9．06）， Hay fever：HR 0.64 （0．08－4．87）， Any atopy：HR 0.28 （0．03－2．49）， Women： Asthma：HR 0.96 （0．12－7．48）， Hay fever：HR I． 45 （0．40－5．30）， Any atopy：HR 0.87 （0．08－9．89）	No association	
Other cancers，case control studies				
Reference	Allergy	Cancer type：statistical value （ $95 \% \mathrm{CI}$ ）	Association	Comments
（ii9）Chung	Allergic rhinitis	Nasopharyngeal carcinoma： OR 2.29 （2．05－2．56）	Positive	
（125）Fillippidis	Any allergy（not specified）	Laryngeal cancer： OR 0．87（0．55－I．4）	No association	
(153) Frentzel－Beyme	Skin allergy（not specified） Hay fever	Bone tumors： RR 0.76 （0．37－I．55）， RR I． 49 （0．65－3．43）	No association	
（130）Goedert	Any allergy（not specified）	Kaposi＇s sarcoma OR I． 54 （0．88－2．70）	No association	
（121）Hsiao	Any allergy（not specified）	Head and neck cancer： OR 0．4I（0．27－0．62）， Oral cancer： OR 0.36 （0．22－0．57）， Oropharyngeal cancer： OR 0.49 （0．25－0．96）， Laryngeal cancer： OR 0．48（o．19－I．I8）	Negative， Negative， Negative， No association	Original study plus meta－analysis
（122）Liao	Any allergy（allergic rhinitis，skin allergy， food allergy，drug allergy and asthma）	Head and neck cancer： $\text { OR } 0.56 \text { (0.43-0.73) }$	Negative	Diagnosis of squamous cell carcinoma of the head and neck，including oral cavity，oropharynx，hypopharynx， larynx．
（120）Lin	Allergic rhinitis Men Women	Nasopharyngeal carcinoma HR 2.33 （1．59－3．40） HR 2.06 （土．3I－3．25） HR 3.02 （1．47－6．22）	Positive	

(124) Lupo	Any allergy (Asthma, eczema, hives, not specified)	Rhabdomyosarcoma OR 0.60 (0.4I-0.87)	Negative	Patient population: Children
(i26) Menegaux	Any allergy (asthma, hay fever, other ear, nose, and throat allergy such as rhinitis and sinusitis, eczema, and other dermatologic allergy as urticaria, contact dermatitis, food dermatitis, or hypersensitivity to drugs)	Neuroblastoma: OR 0.68 (0.44-І.07)	No association	Patient population: among children over I year of age
(123) Michaud	Any allergy (not specified)	HNSCC: OR 0.8I (0.67-0.98), Laryngeal: OR o. 66 (0.45-0.97), Oropharyngeal cancers: OR 0.73 (0.57-0.92), Oral cavity cancers: OR 0.98 (0.76-I.26)	Negative, Negative, Negative, No association	
(127) Rosato	Any allergy	Biliary tract cancer: OR 0.64 (0.29-I.40)	No association	Using data from two cc
(I28) Schoemaker	Any allergy (history of seasonal or nonseasonal allergic nasal catarrh and conjunctivitis, food allergy, contact allergy or other types of allergy specified by the participant)	Acoustic neuroma: OR 0.9 (0.8-I.I)	No association	
(129) Stott-Miller	Any allergy (not specified)	Oral squamous cell carcinoma: OR ०.8I (০.6I-І.०8)	No association	
Cancer in general, case control studies				
Reference	Allergy	Cancer type: statistical value	Association	Comments
(13i) Allegra	Any allergy (hives, eczema, frequent colds, frequent unexplained rashes, hay fever, asthma)	15-fold decrease in prevalence of cancer $(\mathrm{p}<0.0 \mathrm{I})$	Negative	
(132) Fisherman	Any allergy prevalence	Malignant tumors: 3.2\% Control group: 12.9%	Negative	Prevalence of allergy in patients with malignant tumors and control group.
(133) Kozlowska	Allergic rhinitis	OR 0.67 (0.52-0.8I)	Negative	
(134) McKee	Seasonal allergy No history of allergy	23.7% at operation for cancer, 25.4% at operation for cancer	Negative	
(135) Pompei	Any allergy prevalence	Tumor-bearing patients 8%, Non-tumor-bearing subjects 16 -37\%	Negative	Prevalence of allergy in tumor-bearing patients and non-tumor-bearing patients.
(36) Gonzalez-Perez	Asthma	OR 0.93 (0.86-1.00)	No association	Estimates are adjusted for age, sex, calendar year, BMI, alcohol intake, smoking status, prior comorbidities (cardiovascular disease, diabetes, osteoarthritis, and rheumatoid arthritis), health services utilization, use of aspirin, NSAID, and paracetamol using logistic regression.

Cancer in general, cohort studies

(80) Hwang	Allergic rhinitis	SIR I. 02 (0.98-I.05).	No association	Table 2 in this article shows the SIR's for many types of cancer and allergic rhinitis.
(34) McWhorter	Any allergy (not specified)	OR I. 40 (土.10-I.77)	Positive	The specific allergy type with the strongest cancer risk was hives. The cancer group with the strongest allergy association was lymphatichematopoietic (leukemia, lymphoma, myeloma). Also, further determination of colorectal cancer.
(35) Mills	Any allergy (not specified)	Men: RR I.I3 (0.92-I.39), Women: RR: I.оо (0.85-I.I7)	No association	Cancer sites among males include: colon, rectum, prostate, lung, bladder, melanoma, stomach, kidney, lymphoma, leukemia, multiple myeloma, and sarcoma. Cancer sites among females include: colon, rectum, breast, endometrium, cervix, ovary, lung, bladder, melanoma, stomach, kidney, lymphoma, leukemia, multiple myeloma, and sarcoma.
(138) Skaaby	Any allergy (not specified)	HR 0.86 (0.69-1.06)	No association	
(137) Skaaby	Any allergy (not specified)	HR 1.00 (0.89-1.12)	No association	
Cancer in general, retrospective data analysis				
(136) Chae	Rhinoconjunctivitis	OR I. 44 (1.OO-2.08)	No association	
$\mathrm{CI}=$ confidence interval; $\mathrm{OR}=$ odds ratio; $\mathrm{RR}=$ relative risk; $\mathrm{PNET}=$ primitive neurectodermal tumour; $\mathrm{HR}=$ hazard ratio; $\mathrm{SIR}=$ standardized incidence ratios; SMR = standardized morbidity rate; ROR = risk odds ratio; MVOR = multi variable odds ratio; AOR = age-adjusted odds ratio; NSAID = non-steroidal antiinflammatory drugs; HL = Hodgkin's lymphoma; NHL = non-Hodgkin's lymphoma; DLBCL = diffuse large B-cell lymphoma; ALL = acute lymphatic leukemia; $\mathrm{AML}=$ acute myeloid leukemia; $\mathrm{CML}=$ chronic myeloid leukemia; $\mathrm{AUL}=$ acute undifferentiated leukemia; CLL = chronic lymphocytic leukemia; $\mathrm{FBCL}=$ follicular B-cell lymphoma; MM = multiple myeloma; SBL = sporadic Burkitt lymphoma; LL = lymphocytic leukemia; ML = myloid leukemia; MDS = myelodysplastic syndrome; $\operatorname{SCC}=$ squamous cell carcinoma; $\mathrm{BCC}=$ basal cell carcinoma; NMSC = non-melanoma scan cancer; AEDS = atopic eczema / dermatitis syndrome; HNSCC = head and neck squamous cell carcinoma.				

Table 2. Overview of the studies on the association between allergic diseases and cancer

Types of cancers	Positive association (reference number)	Negative association (reference number)	No association (reference number)	Conclusion
Brain cancer	-	(II, I7-28)	(10-16)	Allergic diseases are associated with reduced risk of brain cancer
Breast cancer	(29)	$(30,31)$	(32-36)	No association between allergic diseases and breast cancer
Lymphatic and hematopoietic cancer	Lymphoma: $(34,37-39)$ Other hematological malignancies: $(34,60-65)$	Lymphoma: $(40-49)$ Other hematological malignancies: (66-72).	Lymphoma: $(33,35,39,47,50-59)$ Other hematological malignancies: $(33,35,39,47,50-59)$	In general, allergic diseases are possibly associated with decreased risk of lymphatic and hematopoietic cancer
Skin cancers	(77)	(76-82)	(77, 78, 80)	Negative association between allergic diseases and melanoma
Colorectal cancers	(80, 83, 84)	(80, 85-92)	$\begin{aligned} & (32,34-36,80,84,88,90, \\ & 9 \mathrm{I}, 93,94) \end{aligned}$	The risk of colorectal cancers is possibly reduced in patients with allergic diseases
Pancreatic cancer	-	(9, 95-100)	(87, IOI, IO2)	Allergic diseases are associated with reduced risk of pancreatic cancer
Urogenital cancers	Prostate cancer in men: $(76,102,105)$ Urogenital cancers in women: (76)	Prostate cancer in men: (8) Urogenital cancers in women: (8ı, ェ०6, Іо7)	Prostate cancer in men: (32-36, 87, 103, IO4 Urogenital cancers in women: $(76,87, \text { 102, 108) }$	Possibly no association between allergies and prostate cancer. Possibly a reduced risk of urogenital cancers in Women with allergic diseases
Lung cancer	$\begin{aligned} & (36,76,8 \text { I, } 84,87 \text {, } \\ & \text { Іоя-ІІз) } \end{aligned}$	(87, 102, 115-1I7)	(32, 33, 35, II3-II5, II8)	Asthma is related with an increased risk of lung cancer in contrast to atopy without asthma
Other cancers	(II9, I2O)	(12I-I24)	(125-130, 153)	No evident association between allergic diseases and other cancers
Cancer in general	(34)	(13I-135)	($35,36,80,136-138$).	Allergic diseases are possibly associated with decreased risk of cancers

