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i N T r o d u C T i o N

Thrombosis is one of the major complications of cancer. 
In 10 to 15% of the patients with clinically overt cancer, 
spontaneous venous thrombosis, thromboembolism after 
cancer surgery, thromboembolism during chemotherapy 
and thrombosis of central venous access lines occur as 
clinical manifestations of thrombosis.1 The relationship 
between cancer and thrombosis is also obvious by the 
clinical observation that thrombosis may be a presenting 
symptom of cancer. Of all noncancer patients presenting 
with an idiopathic thromboembolism, 10 to 20% develop 
cancer in the next three years.2 It was Armand Trousseau 
in the 19th century who first noted the ‘alteration of the 
blood’ in cancer patients.3

Moreover, there is now considerable evidence that the 
blood coagulation system is not only involved in cancer-
associated thrombosis, but also plays an important 
role in the biology of malignant tumours. Cancer cells 
interact with the coagulation system for their growth, for 
angiogenesis and for the dissemination through the body. 
Many components of the coagulation system are involved 
in tumour neovascularisation, and fibrin present in the 
matrix around tumour cells facilitates tumour cell growth.4 
The interference of tumour cells with the coagulation 
system leads to an increased activation of several 
coagulation pathways. And it is this hypercoagulability 
state that is the major determinant of the increased risk 
for the above-mentioned thromboembolic complications 
in cancer patients.

A C T i v A T i o N  o f  T h E  p r i M A r y 
h A E M o s T A T i C  s y s T E M

In normal primary haemostasis a vascular lesion is closed 
by the formation of a platelet plug. First, the platelets adhere 
transiently to subendothelial von Willebrand factor (vWF) 
through the GPIb receptor. This adherence significantly 
slows the movement of the platelets. Secondly, the slowly 
moving platelets start to roll across the subendothelium and 
adhere to vWF and collagen through the GPIb and platelet 
collagen receptors. Finally, these interactions lead to platelet 
activation and aggregation through the GPIIb/IIIa receptors 
on platelets, thereby stably adhering to the damaged vessel 
wall (figure 1). Hence, vWF plays an essential role by 
promoting the adhesion of platelets to the subendothelium.
In cancer patients both platelets and vWF are believed to be 
involved in cancer growth and dissemination.5 It has been 
shown that platelets release vascular endothelial growth 

figure 1. Involvement of tumour cells in the primary 
haemostatic system
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s = subendothelium; EC = endothelial cell; p = platelet; C = collagen; 
vwf = von willebrand factor; gp = glycoprotein; T = tumour cell. 
Circulating platelets and tumour cells adhere to the subendothelial vwf 
and collagen, leading to rolling, adhesion and aggregation through the 
gpib and gpiib/iiia receptors on platelets as well as tumour cells.
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factor (VEGF), the important regulator of tumour-induced 
angiogenesis.5,6 Moreover, VEGF-stimulated endothelial 
cells promote adhesion and activation of platelets.7 
Previous animal studies show that thrombocytopenia 
inhibits and platelet transfusion stimulates tumour 
metastasis in animals.8 Tumour cell adhesion to platelets 
might be essential for dissemination. Blocking tumour-
binding receptors on platelets inhibits metastasis in vitro 
and in vivo.9 Platelets adhering to tumour cells prolong 
tumour cell survival in mice by protecting them from lysis 
by natural killer cells.10 It is suggested that by binding to 
activated platelets, tumour cells are able to adhere better 
to the endothelium ( figure 1). Moreover, they secrete 
cytokines increasing the permeability of the vessel wall, 
thereby enabling dissemination in the surrounding 
tissue.9,11 
Elevated vWF levels have been reported in various cancers 
in humans, including breast cancer and colorectal 
cancer.12-15 In the latter it has been shown that vWF 
levels are associated with tumour stage and metastases.15 
Experimental models in vitro and in vivo suggest that 
vWF facilitates binding of platelets to tumour cells 
thereby hiding the tumour cells from the immune system 
and enabling the attachment of tumour cells to the 
endothelium.9 It has been demonstrated that tumour cells 
express the GPIb and the GPIIb/IIIa receptor.16 These 
receptors can bind the tumour cell to vWF and to platelets 
(figure 1). Patients with disseminated cancer also have a 
significant increase in unusually large vWF multimers 
which facilitates further binding to tumour cells. This 
presence of unusually large vWF multimers is the result 
of a local acquired deficiency of vWF cleaving protease 
(ADAMTS 13).17

In conclusion, there is cumulating evidence for an 
important role of platelets and vWF in tumour growth and 
dissemination.

A C T i v A T i o N  o f  T h E  s E C o N d A r y 
h A E M o s T A T i C  s y s T E M

In normal secondary haemostasis a fibrin clot is formed at 
the site of a vascular lesion by activation of a coagulation 
pathway starting with the exposition of subendothelial 
tissue factor (TF) eventually leading to the conversion of 
fibrinogen to fibrin. This TF has also been thought to play 
a pivotal role in cancer-induced hypercoagulability. 
TF is the key initiator of the coagulation cascade.18 In the 
first or initiation phase TF activates coagulation factor 
VII to factor VIIa. The formed TF/factor VIIa complex 
directly activates coagulation factor X to Xa. Together with 
factor Va, factor Xa is responsible for the conversion of 
prothrombin to thrombin (i.e. factor II to IIa). Thrombin 
induces clot formation by inducing the conversion of 
fibrinogen to fibrin (figure 2a).

In addition to directly activating factor X, in the next or 
propagation phase, the TF/factor VIIa complex also indirectly 
activates factor X to Xa by activating coagulation factor IX to 
IXa which, together with factor VIIIa, also activates factor 
X to Xa. Again this leads to the conversion of prothrombin 
to thrombin and fibrinogen to fibrin (figure 2b). Thrombin 
induces clot formation not only by inducing the conversion of 
fibrinogen to fibrin but also by directly activating platelets and 
by stimulating its own formation by activating clotting factors 
V, VIII and XI (figure 2b). Negatively charged phospholipids 
(e.g. the platelet membrane) and calcium are essential in the 
whole process of fibrin formation.

figure 2a. The initiation phase of the secondary 
haemostatic system and the activation by tissue factor 
(TF) on the tumour cell (T)
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The Tf/viia complex activates factor X to Xa, which, together with 
factor va, activates factor ii (prothrombin) to factor iia (thrombin). 
finally, thrombin catalyses the conversion of fibrinogen to fibrin.

figure 2b. The propagation phase of the secondary 
haemostatic system and the activation by tissue factor 
(TF) on the tumour cell (T)
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The Tf/viia complex also activates factor iX to iXa, which, together 
with factor viiia, activates factor X to Xa. Consequently, this leads to 
the conversion of prothrombin to thrombin and fibrinogen to fibrin. 
Thrombin stimulates its own formation by directly activating the 
clotting factors v, viii and Xi.
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TF is normally only localised in extravascular tissues 
not directly in contact with the blood stream. In case of a 
vascular lesion the subendothelial TF will be exposed to 
the blood resulting in platelet activation, fibrin formation 
and closing of the lesion. In cancer patients, however, TF is 
expressed aberrantly on endothelial cells, monocytes and, 
most importantly, on tumour cells themselves (figures 2a 

and 2b). Moreover, cancer cells may produce a cysteine 
proteinase, known as cancer procoagulant (CP), which 
directly activates coagulation factor X to Xa.19

Endothelial cells do not normally express TF. TF on 
endothelial cells is induced by cytokines as TNF-α and 
IL-1β produced by tumour cells.20 Moreover, these tumour 
cytokines induce expression of adhesion molecules on 
endothelial cells, making them capable of attaching other 
tumour cells.21 This accumulation of tumour cells leads 
to increased cytokine production and thereby increased 
TF expression on the endothelial cells. It is suggested 
that this is a major contribution to the cancer-induced 
hypercoagulability.
Monocytes do not normally express TF. They do express 
TF when they are activated by stimulating agents 
such as bacterial endotoxins, inflammatory cytokines 
and complement factors. TF on monocytes has been 
demonstrated in cancer patients mainly in in vitro 
studies. Isolated monocytes obtained from cancer patients 
expressed more tissue factor than monocytes from healthy 
controls.22-26 No studies have been performed with direct 
in vivo measuring of the TF expression on monocytes. 
However, TF expression on monocytes is still thought to 
have a major role in cancer-induced hypercoagulability.27

TF expression on tumour cells has been shown in many 
cancers, including breast cancer, lung cancer, colorectal 
cancer and pancreatic cancer. Elevated levels of tissue 
factor on tumour cells have been correlated with increased 
angiogenesis, increased vascular density, unfavourable 
prognosis and advanced disease.28-31 TF on tumour cells is 
considered another important factor in the cancer-induced 
hypercoagulability and plays a pivotal role in angiogenesis. 
In preclinical studies TF-deficient mice died after ten days 
of embryonic development because of abnormal formation 
of yolk-sac vessels, suggesting a role for TF in physiological 
angiogenesis.32 The same applies to VEGF-deficient mice, 
suggesting that TF and VEGF regulate similar functions.33 
Expression of TF in tumours upregulates the expression 
of VEGF, thereby inducing a switch to a more angiogenic 
phenotype and inducing sprouting of new blood vessels from 
pre-existing vessels.34 Tumour cells overexpressing TF grew 
more rapidly and formed a larger and more vascularised 
tumour than TF underexpressing tumour cells.34 
In conclusion, TF plays a central role in the activation of 
the coagulation system in cancer-related thrombosis and 
in the enhancement of angiogenesis, tumour growth and 
tumour metastasis

C h A N g E s  i N  T h E  A N T i C o A g u l A N T 
s y s T E M s

In normal haemostasis there is a terminating system to 
prevent ongoing clotting and to confine the fibrin clot to 
the site of the vascular lesion. Key players in this system 
are tissue factor pathway inhibitor (TFPI), antithrombin 
(AT) and activated protein C. TFPI, which is synthesised 
in the endothelium, is the natural inhibitor of TF. It 
binds to the TF/factor VIIa complex and binds directly to 
factor Xa, thereby terminating the initiation phase of the 
coagulation cascade.35 Antithrombin is the (slow) inhibitor 
of coagulation factors IXa, Xa and thrombin, thereby 
terminating the propagation phase. Its effect can be 
greatly accelerated by heparins.36 Activated protein C (aPC), 
together with its cofactor protein S, inhibits the activity 
of coagulation factors VIIIa and Va, contributing to the 
termination of the propagation phase (figure 3). Vitamin 
K-dependent protein C is activated to aPC on the surface 
of endothelial cells by thrombin bound to the membrane 
glycoprotein thrombomodulin. The endothelial protein C 
receptor (EPCR) further stimulates protein C activation.37

Decreased activation of the anticoagulant factors TFPI, 
antithrombin and the proteins of the protein C pathway 
could lead to activation of haemostasis in cancer patients. 
Indeed, decreased levels of antithrombin and protein 
C have been reported.38 Moreover, there are strong 
indications that cancer patients without the factor V 
Leiden mutation have an acquired aPC resistance.39-41  

figure 3. The initiation phase (lower part) and 
propagation phase (upper part) of the secondary 
haemostatic system and the termination by tissue 
factor pathway inhibitor (TFPI), antithrombin and 
activated protein C in the termination phase
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Tfpi is the inhibitor of the Tf/viia complex and factor Xa, 
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On the contrary, elevated plasma levels of TFPI have been 
demonstrated in patients with solid tumours.42,43 TFPI-1 
is the main inhibitor of TF, factor VIIa and factor Xa and 
directly binds cancer cells to the extracellular matrix, 
thereby promoting cancer cell migration.44 TFPI-2 has 
a low inhibitory activity to TF, factor VIIa and factor 
Xa, but is a potent inhibitor of plasmin. Plasmin is a 
protease able to degrade the extracellular matrix directly 
or indirectly by activating matrix metalloproteinases. 
These matrix metalloproteinases degrade collagen and 
other matrix proteins, thereby allowing tumour cells 
and monocytes to invade the extracellular matrix and 
the surrounding tissues.45 TFPI-2 inhibits the plasmin-
mediated activation of matrix metalloproteinases involved 
in tumour progression, invasion, and metastasis.46 Thus, 
elevated levels of TFPI-1 stimulate and elevated levels of 
TFPI-2 inhibit growth and dissemination of cancer cells.
In conclusion, there is cumulating evidence of an important 
role for the anticoagulant proteins in cancer biology.

A C T i v A T i o N  o f  T h E  f i B r i N o l y T i C 
s y s T E M s

The fibrin formed in the initiation and the propagation 
phase of the secondary haemostatic system is strengthened 
by thrombin-activated factor XIII, catalysing the formation 
of cross-links between adjacent fibrin chains to yield the 
mature clot.47 The fibrinolytic system is responsible for the 
lysis of these fibrin clots. In normal fibrinolysis plasminogen 
is converted to plasmin by activation of tissue plasminogen 
activator (tPA) or urokinase plasminogen activator (uPA). 
Plasmin cleaves the fibrin network and releases fibrin 
degradation products fragment D, fragment E and D-dimer. 
Plasmin is inactivated by α2-antiplasmin with the formation 
of plasmin-α2-antiplasmin (PAP) complexes. The activity of 
tPA and uPA is inhibited by specific inhibitors, plasminogen 
activator inhibitor (PAI) 1 and 2 (figure 4).
It has been demonstrated that the fibrinolytic system, 
in particular the urokinase-type plasminogen activator 
system, is involved in the process of tumour cell invasion 
and metastasis. Urokinase-type plasminogen activator 
binds to the urokinase-type plasminogen activator receptor 
(uPAR), which is present on tumour cells and monocytes, 
thus facilitating the conversion of plasminogen to plasmin. 
Plasmin is a protease not only able to cleave the fibrin 
network of a clot but, as mentioned before, also able to 
degrade the extracellular matrix, thereby allowing tumour 
cells and monocytes to invade the extracellular matrix and 
the surrounding tissues (figure 4).45

Elevated tumour levels of uPA, uPAR and PAI-1 are associated 
with poor prognosis in various malignancies, including 
cancers of the lung, stomach, colorectum, bladder, ovary and 
breast.48 Several studies have been carried out in patients 

with breast cancer. Breast cancer patients with high tumour 
levels of uPA had a significantly shorter disease-free and 
overall survival and the tumour uPA level was a strong 
prognostic marker in node-positive as well as node-negative 
breast cancer patients.49-55 High tumour levels of uPAR were 
associated with a shorter disease-free and overall survival, 
particularly in the subgroup of node-positive postmenopausal 
women with breast cancer.56,57 Tumour PAI-1 was a strong 
independent prognostic factor and an important parameter to 
predict metastatic potential in both node-negative and node-
positive breast cancer patients.53,58,59 On the contrary, elevated 
tumour PAI-2 levels have been associated with favourable 
prognosis.60,61 It has been demonstrated that the plasma 
levels of soluble uPAR are significantly increased in stage IV 
breast cancer patients.62-64

Elevated D-dimer levels, indicating the degradation of 
fibrin by the fibrinolytic system, have been described 
before in breast cancer patients as well as in various 
other cancers.65 Recently it has been demonstrated that 
in breast cancer patients preoperative plasma D-dimer 
levels correlate with clinical stage and axillary lymph node 
status.66 Moreover, in patients with metastatic breast cancer 
plasma D-dimer levels correlated with tumour volume, 
progression rate and survival.67 Plasma D-dimer levels 
were significantly elevated in breast cancer patients with 
metastases compared with patients without metastases and 
were highly significantly correlated with survival.64 

figure 4. Involvement of the fibrinolytic system in the 
process of tumour cell invasion and metastasis
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in normal fibrinolysis plasminogen is converted to plasmin by 
activation of tissue plasminogen activator (tpA) or urokinase 
plasminogen activator (upA), cleaving the fibrin network and 
releasing fibrin degradation products fragment d, fragment E and 
d-dimer. plasmin is inactivated by α-2-antiplasmin; tpA and upA 
are inhibited by plasminogen activator inhibitor (pAi) 1 and 2. 
in cancer patients upA binds to the urokinase-type plasminogen 
activator receptor (upAr) on tumour cells, facilitating the conversion 
of plasminogen to plasmin, thereby cleaving the fibrin network and 
degrading the extracellular matrix, allowing tumour cells (T) to 
invade the extracellular matrix and the surrounding tissues.
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In conclusion, the fibrinolytic system seems to play a 
significant role in the process of tumour cell invasion and 
metastasis.

A N g i o g E N E s i s

Angiogenesis is the development of new blood vessels from 
the existing vasculature. It occurs in a highly regulated 
manner in normal physiological processes as wound 
healing. Angiogenesis is closely related to the haemostatic 
system in case of vascular damage. Following injury, the 
haemostatic system regulates platelet adherence and fibrin 
formation, thereby stopping the bleeding; the angiogenic 
system regulates the formation of new blood vessels, a 
vital step in healing the wound. Once clot stabilisation 
is achieved, angiogenesis is modulated by proteins and 
peptide fragments generated from the coagulation and 
fibrinolytic systems.68-70 The fibrin clot, formed in the 
haemostatic process, serves as a matrix for migrating 
endothelial cells. This process is tightly regulated 
by a local balance of pro- and antiangiogenic factors. 
Proangiogenic factors stimulate migration, proliferation 
and differentiation of endothelial cells whereby new 
vessels are formed. Proangiogenic factors identified in 

the haemostatic system include platelet release products, 
such as VEGF and platelet-derived growth factor, and 
coagulation proteins as thrombin, TF, factor VII and 
factor XIII. Antiangiogenic factors characterised from 
the haemostatic system include other platelet release 
products, as platelet factor 4 and thrombospondin, and 
coagulation proteins as antithrombin and PAI-1.68,69 In 
close cooperation, the haemostatic and angiogenic systems 
quickly repair the damaged blood vessel.
In 1971 Folkman first described the pivotal role of 
angiogenesis in tumour growth.71 For their growth 
tumours need oxygen and essential nutrients. When 
tumours are very small, oxygen and nutrients can diffuse 
into the tumour cells. In order to grow and metastasise 
a tumour has to develop an adequate vasculature. By 
activating the haemostatic system, tumour cells induce 
the production of proangiogenic factors as thrombin, 
TF and factor VII, thereby creating the environment for 
the formation of new blood vessels, comparable with 
physiological angiogenesis. The fibrin locally formed 
by activation of the haemostatic system by the tumour 
cells provides the matrix on which the new (often thin-
walled, leaky and poorly organised) blood vessels are 
being formed by stimulation of the proangiogenic factors 
( figure 5). The newly formed blood vessels allow the 

figure 5. Activating the haemostatic system by tumour cells and platelets leads to the production of proangiogenic 
factors and antiangiogenic factors thereby creating the environment for the angiogenesis
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vEgf = vascular endothelial growth factor; pdgf = platelet-derived growth factor; Tf = tissue factor; viia = activated coagulation factor vii;  
pf4 = platelet factor 4; pAi-1 = plasminogen activator inhibitor 1; EC = endothelial cell; p = platelet; T = tumor cell. The fibrin locally formed by activation 
of the haemostatic system by the tumour cells provides the matrix in which the new blood vessels are formed.
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tumour to grow more rapidly and increase the surface 
area through which the tumour cells can escape and 
metastasise.68

Because coagulation factors are proteases that have many 
additional functions in (cancer) cell regulation, the idea 
that coagulation activation in cancer patients is solely 
linked to angiogenesis is an optimistic short cut. For 
example, direct cell signalling by coagulation proteases 
activating protease-activated receptors (PARs) leads to 
proliferation and invasiveness of cancer cells. This shows 
that other mechanisms, many yet to be elucidated, might 
be more important than regulation of angiogenesis.72,73 
In conclusion, tumour cells activate the haemostatic system 
as an essential step in the formation of new blood vessels, 
in order to grow and eventually metastasise. 

A N T i C o A g u l A N T s  A N d  C A N C E r

Because cancer cells need the coagulation system for 
their growth, angiogenesis and dissemination through 
the body, it has been hypothesised that anticoagulants 
might have an antitumour effect. First coumarin 
derivates were studied. Although promising results were 
shown in animal studies, clinical studies in humans 
are limited and results are conflicting. No differences 
in survival were observed between warfarin-treated 
and control groups for advanced non-small-cell lung, 
colorectal, head and neck and prostate cancer.74 However, 
warfarin therapy was associated with a significant 
prolongation in disease-free and overall survival in 
patients with small-cell lung cancer.74 Remarkably, in 
patients treated with coumarins for six months after a 
venous thromboembolism significantly fewer (urogenital) 
cancers were found compared with patients treated for six 
weeks.75 However, the incidence of clinically overt cancer 
was not reduced in patients with idiopathic venous 
thromboembolism treated with oral anticoagulants 
for one year compared with three months.76 More 
studies have been carried out with low-molecular-weight 
heparins (LMWH). In studies comparing LMWH and 
coumarins in the treatment of new patients with a 
venous thromboembolism three-month mortality data 
suggested a survival advantage for the patients on 
LMWH. Subgroup analysis showed that this increased 
survival was in the cancer patient group.77,78 Recently it 
has indeed been shown that LMWH improves survival, 
although in all studies the effect seems limited to the 
patient groups with the relatively better prognosis.79-81 
Moreover, adding LMWH to chemotherapy in small-
cell lung cancer improved survival compared with 
chemotherapy alone.82 It is suggested that apart from 
the effect of LMWH on coagulation, other mechanisms 
influenced by heparins are also involved.83,84 More 

studies treating cancer patients with LMWH or newer 
antithombotics, as pentasaccharides and oral thrombin 
inhibitors, are currently underway.

f u T u r E  p E r s p E C T i v E s

Several research groups are continuously investigating the 
molecular pathophysiology of the activation of the coagulation 
system by tumour cells. At first this was mainly a topic for 
haematologists. However, since it has been demonstrated 
that anticoagulant treatment with LMWH might prolong 
survival in cancer patients, oncologists have been alerted. The 
survival advantage shown with LMWH in selected patients 
seems comparable with the survival advantage demonstrated 
with the very expensive targeted drugs currently used in 
oncology.79-82 New studies in various malignancies will follow 
soon and will attract more attention from oncologists. When 
the effect of LMWH has been definitely proven in patients 
with advanced disease, the next step will be to add LMWH 
to adjuvant treatment in cancer patients. The main goal 
of adjuvant treatment in, for example, breast or colorectal 
cancer is to prevent the development of local recurrence 
and distant metastases. This is currently achieved with 
standard chemotherapy. Trials in breast cancer have shown 
that adding targeted therapy with monoclonal antibodies is 
improving disease-free survival in certain types of breast 
cancer.85,86 By adding this targeted immunotherapy to the 
standard therapy a substantial reduction in recurrences has 
been achieved. When it has indeed been proven that LMWH 
prolongs survival in advanced disease, LMWH treatment in 
the adjuvant setting added to the standard adjuvant treatment 
with chemotherapy and targeted therapy might give a further 
reduction in recurrences and distant metastases in breast 
cancer patients and other cancers. Further understanding 
of the pathophysiology of the hypercoagulability in cancer 
will lead to the development of new tools in conquering the 
cancer.

C o N C l u s i o N s

Almost one and a half century after Armand Trousseau 
first noted the hypercoagulability in cancer patients, we 
are beginning to understand that many proteins of the 
haemostatic and fibrinolytic system play a pivotal role in 
tumour biology. By activating the haemostatic and fibrinolytic 
systems, tumour cells are able to grow, form new blood 
vessels and metastasise. This activation of the coagulation 
system leads to an increased risk of thromboembolism in 
cancer patients. More insight in the underlying mechanisms 
might lead to the discovery of new agents that interfere with 
vital processes in tumour behaviour. Armand Trousseau 
could only dream of these developments.

Nijziel, et al. Link between haemostatic system and cancer.
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