Falsely elevated lactate in severe ethylene glycol intoxication

Y. Sandberg1, P.P.M. Rood1, H. Russcher1, J.J.M. Zwaans1, J.D. Weigel4, P.L.A. van Daele1*

Department of Internal Medicine, *Emergency Medicine, +Clinical Chemistry, ±Critical Care Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands, *corresponding author: e-mail: p.l.a.vandaele@erasmusmc.nl

ABSTRACT

A 29-year-old male presented at the emergency department of our hospital in a confused state. He had a history of psychoses and substance abuse. Physical examination revealed hyperventilation and abdominal tenderness. Blood gas analysis in the emergency department using an ABL 725 Radiometer analyser showed a severe metabolic acidosis with massive lactate elevation. Lactate acidosis due to mesenteric ischaemia was suspected. However, toxicology screening demonstrated ethylene glycol intoxication. Treatment with ethanol infusion and acute haemodialysis was started. Repeated laboratory measurements using a clinical chemistry analyser showed minimal plasma lactate elevation. Falsely elevated lactate measurement is a little known phenomenon that can occur in ethylene glycol intoxication and can cause serious delay in diagnosis. Therefore, elevated lactate concentrations measured on intensive care unit and emergency department blood gas analysers should be confirmed by a clinical chemistry analyser in the main laboratory in case of suspected ethylene glycol intoxication.

KEYWORDS

Ethylene glycol intoxication, lactate, blood gas analyser

INTRODUCTION

Ethylene glycol is a colourless and odourless fluid that has a sweet taste. It is a component of antifreeze fluid, which is the major source of exposure in poisonings. Poisoning with ethylene glycol can occur through attempted inebriation, intentional self-harm, or unintentional ingestion. The signs and symptoms of ethylene glycol intoxication generally develop in three distinct stages. Stage 1 (30 min to 12 hours after ingestion): gastrointestinal and nervous system involvement; stage 2 (12 to 24 hours after ingestion): cardiopulmonary dysfunction with profound metabolic acidosis; stage 3 (24 to 72 hours after ingestion): acute renal failure which can be oliguric or anuric. The mortality of ethylene glycol intoxication is variable, ranging from 1 to 22%. Ethylene glycol metabolites are structurally similar to lactate and can cause artificial elevation of lactate concentration. This is especially the case when using blood gas machines in the emergency department and intensive care unit. We present a case of ethylene glycol intoxication and demonstrate the substantial potential for misdiagnosis.

CASE REPORT

A 29-year-old man with a history of psychoses and substance abuse presented at the emergency department of our hospital in a confused state. His medication was...
penfluridol with unknown dose. On examination his
temperature was 36.1°C, the pulse 110 beats/min, the
blood pressure 180/100 mmHg, and a score of 11 on the
Glasgow Coma Scale (possible range, 3 to 15, with higher
scores indicating better status). The respiratory rate was
50 breaths/min, and the oxygen saturation 100%. His
pupils were equal, round, and reactive to light. Further
physical examination revealed a diffusely tender abdomen
and hypoactive bowel sounds. Testing of arterial blood
in the emergency department using the ABL 725 blood
gas analyser (Radiometer Medical, Denmark) indicated
severe metabolic acidosis with a lactate concentration
of 24 mmol/l. Full laboratory investigations showed
an elevated creatinine, an anion gap of 25 mmol/l and
osmolar gap of 6 mOsmol/kg (table 1). Both a chest
radiograph and computed tomography (CT) scan of the
head were normal and because of physical exhaustion
mechanical ventilation was started. A normal CT scan of
the abdomen ruled out that the lactate elevation was caused
by mesenteric ischaemia. Urine toxicological screening
indicated cannabinoid use. The urine sediment showed
calcium oxalate crystals. Toxicological screening of serum
at the time of admission showed an ethylene glycol level
of 640 mg/l (10.3 mmol/l) and was negative for ethanol
and methanol. Remarkably, a second plasma lactate level
measured on a DxC-800 automated chemistry analyser
(Beckman Coulter) in the hospital’s main laboratory was
only 4.7 mmol/l. Ethanol infusion, bicarbonate infusion
and haemodialysis were initiated immediately and the
patient was admitted to the intensive care unit. Shortly
afterwards, he could be extubated. The renal failure has
completely recovered.

PATHOPHYSIOLOGY AND CLINICAL MANIFESTATIONS

Ethylene glycol itself is relatively nontoxic, but it is
metabolised by successive oxidations to toxic metabolites
such as glycolic acid, glyoxylic acid and oxalic acid
(figure 1). The prominent metabolic acidosis and organ
failure are caused by circulating glycolic acid. Oxalic
acid may combine with ionised calcium in the plasma
to form calcium oxalate crystals. Calcium oxalate
precipitates in the renal tubules and is thought to cause
renal failure.6,7 Detection of typical calcium oxalate
crystals in the urine supports the diagnosis of ethylene
glycol intoxication but is a late and non-specific finding.
The increased anion gap is attributable to ethylene glycol
and its metabolites, the osmolar gap is only increased
shortly after ethylene glycol ingestion.8 The time span
between ingestion and presentation in our case was
more than 12 hours and explains the normal osmolar
gap at presentation.

Table 1. Results of laboratory tests

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Time</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>13.00</td>
<td>151</td>
<td>149</td>
<td>147</td>
</tr>
<tr>
<td>Potassium</td>
<td>mmol/l</td>
<td>5.1</td>
<td>4.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Urea</td>
<td>mmol/l</td>
<td>6.1</td>
<td>7.1</td>
<td>-</td>
</tr>
<tr>
<td>Creatinine</td>
<td>mmol/l</td>
<td>135</td>
<td>160</td>
<td>-</td>
</tr>
<tr>
<td>Chloride</td>
<td>mmol/l</td>
<td>118</td>
<td>112</td>
<td>115</td>
</tr>
<tr>
<td>Calcium</td>
<td>mmol/l</td>
<td>2.37</td>
<td>2.23</td>
<td>-</td>
</tr>
<tr>
<td>Glucose</td>
<td>mmol/l</td>
<td>11.9</td>
<td>10.6</td>
<td>10.0</td>
</tr>
<tr>
<td>pH</td>
<td>7.11</td>
<td>7.09</td>
<td>7.11</td>
<td>7.45</td>
</tr>
<tr>
<td>pCO _2</td>
<td>kPa</td>
<td>0.8</td>
<td>7.2</td>
<td>4.7</td>
</tr>
<tr>
<td>pO _2</td>
<td>kPa</td>
<td>19.2</td>
<td>56.7</td>
<td>59.1</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>mmol/l</td>
<td>1.9</td>
<td>15.7</td>
<td>10.8</td>
</tr>
<tr>
<td>Oxygen saturation</td>
<td></td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>U/l</td>
<td>983</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Creatinine kinase</td>
<td>U/l</td>
<td>1515</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anion gap</td>
<td>mmol/l</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Osmolar gap</td>
<td>mOsmol/kg</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lactate (POCT)</td>
<td>mmol/l</td>
<td>24</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Lactate (Chemistry analyser)</td>
<td>mmol/l</td>
<td>4.7</td>
<td>4.3</td>
<td>2.6</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>mg/l</td>
<td>640</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethanol</td>
<td>g/l</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1Anion gap = [Na⁺] - ([Cl⁻] + [HCO₃⁻]); 2Osmolar gap = measured osmolality - (2 × [Na⁺] + [glucose] + [urea]); 3POCT = point-of-care test; – = not done.
TREATMENT

The metabolism of ethylene glycol occurs primarily through alcohol dehydrogenase. Ethanol is a competitive substrate for alcohol dehydrogenase, which has greater affinity for ethanol than for ethylene glycol. Therefore ethanol is effective and inhibits the metabolism of ethylene glycol (figure 1). Although it is difficult to dose and has sedative and behavioural effects, ethanol is inexpensive and easily obtained. An alternative is fomepizole (4-methylpyrazole). It is also a competitive inhibitor of alcohol dehydrogenase and prevents the formation of toxic acid metabolites. It is easy to dose, easy to administer, and side effects are rare. However it is expensive and not available in all hospitals. Haemodialysis is used to clear both ethylene glycol and its toxic metabolites more quickly.

DISCUSSION

A remarkable finding in our case was the discrepancy between the lactate level measured on a blood gas analyser in the emergency department and the plasma lactate level measured on a clinical chemistry analyser (figure 2). Slightly elevated lactate concentrations can be found in ethylene glycol intoxication, but ethylene glycol does not cause excess lactate production. Glycolic acid and glyoxylic acid can both cause artificial elevation of lactate. Certain types of L-lactate oxidase allow cross reaction with these ethylene glycol metabolites. Especially blood gas analysers (using L-lactate oxidase) are affected, while analysers using lactate dehydrogenase are free of interference. Measuring a ‘lactate gap’ using two different technologies (figure 2), only one of which is sensitive to glycolic acid, is suggested to be helpful in diagnosing advanced ethylene glycol poisoning. However, when ethylene glycol intoxication is in the differential diagnosis, the ethylene glycol concentration should be directly measured.

We wished to gain insight into how widespread the problem of false lactate elevation due to glycolic acid interference is. Therefore samples were spiked with various concentrations of glycolic acid (2.5 mmol/l and 12.5 mmol/l). The lactate values were determined in 30 Dutch hospitals using different clinical chemistry analysers and blood gas machines, including Radiometer ABL analysers (figure 3). The majorit of measurements (81%) on blood gas analysers showed falsely elevated lactate levels. Radiometer blood gas analysers were available in 12 hospitals and were all affected. The chemistry

Figure 1. Metabolic transformation of ethylene glycol

- Ethylene glycol
- Competitive inhibition of Alcohol dehydrogenase
- Glycoaldehyde
- Glycolic acid
- Glyoxylic acid
- Calcium oxalate
- Glycine
- Oxalic acid
- Formic acid
- +Ca²⁺

*These metabolites can cause artificial lactate elevation using blood gas analysis machines.

Figure 2. Lactate gap

- POCT-method (ABL725 Radiometer)
- Chemistry analyser (DxC-800, Beckman Coulter)

Figure 3. The effect of glycolic acid upon blood lactate measurements using different analysers

analysers demonstrated no or only minimally elevated lactate concentrations.

CONCLUSION

This case demonstrates the potential to misdiagnose ethylene glycol intoxication as a lactate acidosis due to falsely elevated lactate measurement. Although serum lactate elevations can be detected in patients with ethylene glycol intoxication, such elevations are usually minor. The falsely elevated lactate levels likely occur because of the incomplete specificity of L-lactate oxidase. Knowledge of this analytical interference is essential in every patient presenting with severe metabolic acidosis and massive lactate elevation. Elevated lactate concentrations on blood gas analysers should be confirmed by a chemistry analyser in case of suspected ethylene glycol poisoning. On the other hand, the lactate gap between measurements with different analysers can help in diagnosing a possible ethylene glycol poisoning.

REFERENCES
