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a b s t r a C t

blood and other body f luids contain cell-derived 
microvesicles. the presence of microvesicles in cancer 
patients was already noticed in the late 1970s. since then, 
the prothrombotic state in cancer patients has invariably 
been associated with the presence of such microvesicles. 
more recently, a growing body of evidence supports an 
important contribution of microvesicles to cancer cell 
survival, invasiveness and metastases. Here, we will present 
an overview of the many contributions of microvesicles to 
cancer development and progression. in addition, their 
role in risk stratification and treatment of cancer patients 
is discussed.
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i n t r o d U C t i o n

Compared with healthy controls, blood from cancer patients 
contains elevated levels of cell-derived microvesicles. What 
are these microvesicles and why are their levels elevated in 
cancer patients? 

types of microvesicles
Human body fluids contain two different types of 
cell-derived microvesicles: microparticles and exosomes. 
Eukaryotic cells, including blood cells, endothelial cells 
and cancer cells, release microparticles by budding off 
parts of their outer cell membrane. Based on electron 
microscopy, microparticles range in size from 100 nm 
to 1.0 μm.1 Exosomes arise from endosomes, which are 
initially formed by plasma membrane invagination. 
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Endosomes release vesicles into their lumen, ‘intraluminal 
vesicles’. Endosomes containing ‘intraluminal vesicles’ 
are called multivesicular bodies (MVBs). Finally, when 
MVB membranes fuse with the plasma membrane, these 
‘intraluminal vesicles’ become secreted and are then called 
exosomes. Exosomes range in size from 30 to 100 nm and 
all cell types containing MVBs can be expected to secrete 
exosomes. Such cell types include haematopoietic cells, 
cancer cells, and epithelial cells.2 At present, there is 
no generally accepted definition of microparticles and 
exosomes. Not only theoretical issues but especially 
methodological problems hamper the achievement of 
consensus. In this review, we will use the general term 
microvesicles. 

General effects of microvesicles
Microvesicles are involved in many (patho) physiological 
processes in the human body (table 1). Membranes of 
microvesicles contain phospholipids and proteins that 
often originate from membrane lipid rafts of the parental 
cell, including functional transmembrane receptors such 
as tissue factor (TF). Furthermore, intracellular proteins, 
second messengers and genetic material can be enclosed 
and specifically sorted into microvesicles. As a consequence 
of sorting, the functional properties and biological role of 
microvesicles may differ from their parental cells.3 
Microvesicles interact with cells by binding to cell-type 
specific adhesion receptors. After this initial interaction, 
membranes of microvesicles may fuse with the plasma 
membrane of the target cell, thereby transferring receptors 
that can induce cell signalling or even transformation, 
genetic information and second messengers.4 Microvesicles 
are not only involved in intercellular communication, 
but also in other processes including regulation of 
programmed cell death, modulation of the immune 
response, inflammation, angiogenesis and coagulation.5-7 
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The release of microparticles is a physiological 
phenomenon. All sorts of biochemical triggers 
induce release of microvesicles, such as cytokines and 
chemothera peutics, as do physical triggers such as 
hypoxia and shear stress. In diseases, aberrant levels of 
microvesicles are observed, and their numbers, cellular 
origin and composition are disease (state) dependent. 

microvesicles in cancer patients
The presence of microvesicles in cancer patients was 
already noticed in the late 1970s.8 The underlying 
mechanism leading to the release of microvesicles from 
cancer cells, however, is still unknown. In a mouse model, 
the loss of the tumour suppressor gene p53 leads to an 
increased release of TF-bearing microvesicles, indicating 
involvement of p53 in this process.9 
Blood from cancer patients contains not only microvesicles 
from cancer cells but especially high levels of procoagulant 
platelet-derived microvesicles. The procoagulant state of 
cancer patients has at least partly been attributed to these 
microvesicles.10,11 Recent studies have shown that cancer 
patients with venous thromboembolism have higher levels 
of TF-bearing microvesicles compared with cancer patients 
without thrombosis.12,13 In our opinion, this procoagulant 
phenotype of microvesicles is merely a side effect of a more 
important role they may have in cancer patients, i.e. by 
facilitating cancer progression. This review summarises 
the effects of cancer cell-derived microvesicles in cancer 
biology. Finally, the possible value of these vesicles in 
clinical practice will be discussed. 
 

r o l e  o f  m i C r o V e s i C l e s  i n  C a n C e r 
P r o G r e s s i o n

Cellular survival
Escape from apoptosis
Cells release microvesicles as a protective mechanism 
against intracellular stress. In nucleated mammalian 
cells, caspase 3 is one of the main executioner enzymes of 

apoptosis. Microvesicles containing substantial quantities 
of caspase 3 are present in conditioned medium of viable 
cell cultures,14,15 but caspase 3 is not detectable within the 
cells from which these microvesicles originate. Various 
investigators have postulated that cells may escape from 
apoptosis by releasing caspase 3-containing microvesicles, 
thus preventing intracellular accumulation of the 
potentially dangerous caspase 3. Recently, this hypothesis 
was strengthened by the observation that cells indeed 
accumulate caspase 3 and undergo apoptosis when the 
release of microvesicles is inhibited.5 Thus, the release of 
caspase 3-containing microvesicles contributes to cellular 
survival. In addition, caspase 3 itself is also involved 
in the release of microvesicles. MCF-7 cells, a human 
breast cancer cell line lacking caspase 3, do not release 
any or hardly any microvesicles. Their ability to release 
microvesicles, however, can be restored by transfection 
with functional caspase 3.16 Since these microvesicles also 
contain caspase 3, it appears that caspase 3 contributes to 
its own removal (A.N. Böing, unpublished observation). 
A second example, illustrating how the release of cancer 
cell-derived microvesicles contributes to cellular survival, 
comes from studies demonstrating an association between 
their release and multidrug resistance. Shedden and 
colleagues, who quantified membrane shedding-related 
gene expression, observed that chemo-insensitive cancer 
cell lines express more membrane shedding-related genes 
compared with chemo-sensitive cells. Furthermore, the 
microvesicles contained high levels of the chemotherapeutic 
agent doxorubicin.17 The most convincing evidence comes 
from a study by Safeaei and colleagues, who demonstrated 
that microvesicles of cisplatin-insensitive cancer cells 
contained 2.6-fold more cisplatin than microvesicles 
released from the cisplatin-sensitive cells.18 

Escape from immune surveillance
In a pioneering study published in 1988, Sims and co-workers 
showed that complement activation triggers the release of 
microvesicles. When human platelets were incubated with 
a lytic concentration of the complement C5b-9 complex, 

table 1. Effects of cancer cell derived microvesicles

effect role of microvesicles references

Improves cellular survival Removal apoptosis inducing proteins 5

Chemotherapy resistance 17, 18

Escape immune surveillance Complement resistance 20-22

T-cell suppression 23-28

Mimic environment 13,29,30

Environmental degradation Transport active matrix metalloproteinases 31-34

Angiogenesis Activation coagulation system: fibrin matrix formation and PAR  
signalling by thrombin formation

13,38,40

Intercellular transfer mRNA coding for growth factors 45,46

Metastasising Intercellular transfer oncogenes 47-49

Par=protease activated receptor.
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platelets simply survived by releasing C5b-9-enriched 
microvesicles. This mechanism was called ‘complement 
resistance’, and this release can be considered a form of 
protection against external stress.19 Similarly, cancer cells 
use the release of microvesicles to escape from complement-
induced lysis.20,21 A recent study showed that cancer cells can 
inactivate the complement complexes by shedding vesicles 
containing the complement inhibitor membrane cofactor 
protein CD46, which promotes inactivation of complement 
C4b and C3b. Liberation of CD46 minimalises inflammation 
in the microenvironment. Although a solid tumour is well 
protected from complement attacks, micro tumours are 
attacked by the complement system.22 
A more indirect way to improve survival of cancer cells is 
by suppressing the immune response, i.e. via the release 
of microvesicles bearing immune modulatory molecules. 
Microvesicles from various cancer cells expose Fas ligand 
(FasL, CD95L), a ligand of the death receptor Fas (CD95), 
which induces T-cell apoptosis and diminishes the function 
of adaptive immune cells.23,24 Kim and colleagues showed 
a modest correlation between lymph node infiltration 
and tumour burden and the numbers of circulating 
FasL-exposing microvesicles in blood from patients with oral 
squamous cell cancer.25 Microvesicles from lymphoblastoma 
cells exposed latent membrane protein-1 (LMP-1), another 
immune suppressing transmembrane protein, thereby 
inhibiting leucocyte proliferation. This finding may explain 
the observed inhibition of T-cell proliferation in patients with 
Epstein-Barr virus associated tumours.26,27 Microvesicles not 
only suppress effector T lymphocytes but also target antigen-
presenting cells, the latter also known as dendritic cells. 
Valenti et al. showed that cancer cell-derived microvesicles are 
able to fuse with plasma membranes of monocytes, thereby 
impairing their differentiation to antigen-presenting cells.28 
Finally, cancer cells may hide from the immune system by 
mimicking the host environment. In a study by Tesselaar et 

al., a low number of circulating microvesicles were present 
in cancer patients that stained for MUC1, a cancer cell 
antigen, and glycoprotein IIIa (integrin β3), which is mainly 
present on platelets and platelet-derived microvesicles. 
Based on these data, they suggested that such microvesicles 
are released after fusion of microvesicles from malignant 
epithelial cells with platelets.13 Alternatively, platelet-derived 
microvesicles were shown to transfer integrins to breast 
and lung cancer cells.29,30 Thus, cancer cells can fuse with 
non-cancer cell-derived microvesicles, thereby receiving 
lipids and membrane-specific proteins which may help to 
escape from immune surveillance. Figure 1A summarises 
the effects of microvesicles on cellular survival.

invasive growth and metastasising
Environmental degradation
Degradation of the extracellular matrix (ECM) is 
essential for tumour growth.31 Microvesicles expose and 

contain proteases, including matrix metalloproteinase 
(MMP)-2 and MMP-9 and its zymogens, and 
urokinase-type plasminogen activator (uPA). MMPs 
degrade basement membrane collagens, whereas 
uPA catalyses the conversion of plasminogen into 
plasmin. Plasmin, a serine protease, degrades numerous 
components of the ECM, including fibrin, and activates 
MMP zymogens. Ginestra et al. analysed the content 
of microvesicles in ascites from 33 women with 
different gynaecological pathologies, including benign 
ovarian lesions, ovarian carcinomas, and endometrial 
carcinomas. They showed that ascites from the cancer 
patients contained higher numbers of microvesicles 
compared with ascites from women with benign disease. 
Microvesicles from patients with benign serous cysts had 
only minimal lytic activity, whereas those from cancer 
patient ascites contained active MMPs.32 Similarly, the 
malignant potential of tumours was associated with 
the MMP-2 activity of microvesicles.33 Graves et al., 
who evaluated microvesicles in women with early-stage 
and late-stage ovarian carcinoma, reported increased 
numbers of microvesicles in late stage ascites and 
showed that MMP-2, MMP-9 and uPA activities are 
primarily concentrated within microvesicles. Inhibition 
of MMP-2, MMP-9 or uPA nearly abolished the ability 
of these microvesicles to support tumour invasiveness, 
which underlines the relevance of this pathway, at least 
in vitro.34 The increased invasiveness of cancer cells by 
microvesicle formation is shown in figure 1B. 

Angiogenesis
Fibrin, the insoluble end product of coagulation, plays an 
important role in tumour growth. Tumour cells can be 
coated with fibrin to escape from immune detection and 
attacks, and the fibrin matrix supports outgrowth of new 
blood vessels. One of the general effects of microvesicles 
is their support of coagulation.35-37 Especially in cancer 
patients, TF-bearing microvesicles are present in the 
peripheral blood, albeit that the cellular origin of such 
microvesicles is still disputed.38-40 A part of the TF-bearing 
microvesicles is likely to originate from cancer cells and 
probably contributes to thrombus formation equally to 
leucocyte-derived microvesicles, which may also expose 
procoagulant TF. TF-bearing microvesicles can be captured 
and trapped by activated platelets at the site of a wound, 
thereby delivering and accumulating their procoagulant 
TF at the site of vascular damage.11,41,42 Furthermore, 
TF-bearing microvesicles may fuse with (membranes of) 
activated platelets, thereby transferring TF to the platelet 
membrane, which can then not only propagate but also 
initiate coagulation.3 Figure 1C shows the contribution of 
microvesicles to fibrin formation. 
The procoagulant effect of microvesicles also indirectly 
leads to the release of growth factors. Thrombin 
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the corresponding P-selectin ligands, such as P-selectin 
glycoprotein (PSGL) and Sialyl Lewis. As a consequence, 
the cancer cells will be surrounded by platelets and/or 
P-selectin-bearing microvesicles, thus protecting cancer 
cells from immune surveillance and facilitating their 
binding to the vessel wall.39,50 The procoagulant properties 
of cancer cell-derived microvesicles may further support 
intravascular fibrin formation, which will facilitate 
adherence of cancer cells to the vessel wall. Figure 1E 
presents the contribution of microvesicles to cancer cell 
migration. 

f U t U r e  a P P l i C a t i o n s  i n  C a n C e r 
t H e r a P y 

anti-cancer treatment
Cancer cell-derived microvesicles have been used as 
adjuvant anti-cancer treatment. As described above, 
they have immunosuppressive activity due to functional 
alterations induced in T cells, ranging from apoptosis to 
defects in T-cell function.23-25,51 However, cancer cell-derived 
microvesicles may also facilitate immune attacks.2,52-59 
Wolfers et al. showed that cancer cell-derived microvesicles 
transferred tumour antigens to antigen-presenting cells, 
which in turn triggered a T-cell-dependent anti-tumour 
response.59 In addition, antigen-presenting cells were 
capable of producing microvesicles that primed cytotoxic 
T lymphocytes in vivo and even eradicated or suppressed 
growth of murine tumours. These autologous denditric 
cell-derived microvesicles have been tested in phase I 
clinical trials in patients with metastatic melanoma,60 
advanced non-small cell lung cancer61 and colorectal 
cancer.62 All studies concluded that this therapy is 
beneficial and safe, with some patients experiencing 
long-term stability of disease. Currently, several studies 
are ongoing to optimise this autologous anti-cancer 
immunotherapy.57,63,64

Release of microvesicles itself could be an interesting 
target of anti-cancer therapy, i.e. by counteracting the 
beneficial effects of vesicle release on cellular survival or 
tumour growth. Some currently used chemotherapeutics 
impair, at least partially, the underlying mechanisms of 
microvesicle release, e.g. drugs targeting at Rho-associated 
coiled coil-containing protein kinases (ROCK).65 ROCK-I 
and II are both serine-threonine kinases which not only 
affect cell morphology, migration and adherence, but also 
markedly contribute to release of microvesicles.15,66 Rattan 
and colleagues showed that inhibition of the Rho/Rock 
pathway resulted in smaller tumour mass in patients with 
glioblastioma.65 Because the release of microvesicles by 
cancer cells influences many processes associated with 
tumour growth, inhibition of microvesicle release is a 
potential target in anti-cancer treatment. 

activates cells via cleavage of protease-activated receptors 
(PARs), and this activation results in release of vascular 
endothelial growth factor (VEGF).43,44 Finally, platelet-
derived microvesicles stimulate mRNA expression of 
pro-angiogenic factors in cancer cells,29 and cancer 
cell-derived microvesicles contain mRNA encoding growth 
factors such as VEGF and hepatocyte growth factor. Baj 
et al. showed that such vesicles fuse with monocytes, 
transferring their nucleic acids and inducing production 
of growth factors.45,46 Figure 1D shows the influence of 
cancer cell-derived microvesicles on angiogenesis. 

Metastasising
Cancer cell-derived microvesicles contribute to horizontal 
propagation of oncogenes and their associated transforming 
phenotype. Recently, Newadi et al. demonstrated the 
intercellular transfer of the truncated oncogenic form of 
the epidermal growth factor receptor (EGFRvIII) from 
glioma cancer cells to glioma cells lacking this receptor. 
After this transfer, the recipient cells became transformed 
and showed characteristic EGFRvIII-dependent changes in 
expression levels of target genes.47 Although not studied 
yet, a similar intercellular transfer of other mutant 
oncogenes, such as MET and HER-2, may be a general 
mechanism operative in different tumour types which 
cause cancer growth at distant sites. 
DNA-containing microvesicles from apoptotic cells 
(‘apoptotic bodies’) were shown to transfer DNA to other 
cells. In that study, apoptotic bodies from cancer cells 
triggered the expression of oncogenes in fibroblasts in 

vitro. After injecting these cells to SCID mice, tumours 
expressing the oncogene were observed. Thus, also the 
genetic information necessary for transformation and cells 
may by functionally transferred between cells by cancer 
cell-derived microvesicles.48 
Skog et al. showed that glioblastoma cancer cells release 
microvesicles containing mRNA, microRNA and 
angiogenic growth factors. After transfer of vesicular 
RNA by fusion of the microvesicles with endothelial cells, 
the mRNA was translated into functional pro-angiogenic 
proteins thereby promoting angiogenesis. Cells with 
low levels of mRNAs produced microvesicles with high 
levels of mRNA in a constant distribution. This supports 
the hypothesis that the enrichment of microvesicles 
with mRNA and intracellular proteins is a selective 
process.49 
Whether or not microvesicles promote mobilisation 
of tumour cells, however, has not been extensively 
studied. Lymphogenous spread could be enhanced by 
the immune-suppressive effects of cancer cell-derived 
microvesicles.25 Activation of platelets by TF-bearing 
microvesicles is probably helpful in the haematological 
spread of cancer cells, since activated platelets expose 
the adhesion receptor P-selectin and cancer cells expose 

Van Doormaal, et al. Cell-derived microvesicles and cancer.
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figure 1. The role of cancer cell derived microvesicles in cancer progression 
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Measurement of protein composition of microvesicles may 
be useful to monitor the efficacy of anti-cancer treatment. 
Clayton et al. exposed B-lymphoblastoid cell lines to 
external stress, i.e. 42 °C for three hours.67 Although 
the number of released microvesicles was comparable 
with control cells, the protein composition was markedly 
different. Stressed cells produced microvesicles containing 
relatively high quantities of heat shock proteins. Since heat 
shock proteins form complexes with proteins containing 
one or more production errors, their increased presence 
within microvesicles could help to maintain cellular 
homeostasis. Thus, possibly also the protein composition 
of cancer-cell derived microvesicles may directly reflect 
the effects of anti-cancer treatment, and could be an early 
and noninvasive biomarker to assess the effectiveness of 
anti-cancer therapy. 

risk stratification 
Diagnosis
Tumour-specific markers, such as mucin in 
adenocarcinomas, exposed on circulating microvesicles, 
may be useful in the early detection of cancer. In a 
pilot study by Smalley et al., microvesicles were isolated 
from urine of healthy individuals and patients with 
bladder cancer. Eight proteins were found to be elevated 
in microvesicles from cancer patients compared with 
controls.68 Thus, the protein composition of such 
microvesicles can potentially be used in the early detection 
of bladder cancer. Similarly, cancer-specific mRNA can 
be used as a marker for detection of cancer. In the study 
by Skog et al., microvesicles were purified from serum 
samples from glioblastoma patients. A glioblastoma-
specific mutation was observed in almost 50% of the 
samples, which was comparable to the percentage of 
this mutant in glioblastoma patients.49 Cancer-specific 
microRNA was also observed in exosomes purified from 
plasma samples of patients with ovarian cancer. No 
differences in microRNA profiles were observed between 
early and advanced diseased patients whereas patients with 
benign ovarian disease and healthy women did not express 
these microRNA profiles. Therefore, the authors suggest 
that microRNA profiles could be used in patients with a 
high risk for ovarian cancer.69

Prognosis
Different studies have evaluated the association between 
the level of microvesicles and survival of cancer patients. 
In the study by Tesselaar and colleagues, patients with both 
high microvesicle-associated procoagulant TF activity and 
epithelial mucin (MUC1) had a lower survival rate at three 
to nine months follow-up compared with patients with low 
TF activity and no MUC1 expression. After adjustment 
for other prognostic factors, the likelihood of survival for 
an individual with both membrane proteins present on 

circulating microvesicles was 0.42 (95% CI: 0.19 to 0.94).13 
In a prospective, nonrandomised single-centre study in 
hormone refractory prostate cancer patients, the impact 
of platelet-derived microvesicles on overall survival was 
assessed in 43 patients before starting chemotherapy. The 
overall survival was significantly shorter in patients with 
platelet-derived microvesicles above a certain cut-off level 
than in patients with values below that level.70 Kim et al. 
performed a study in 109 patients with gastric cancer and 
in 29 healthy controls. Plasma levels of platelet-derived 
microvesicles were significantly higher in the patients 
than in controls, and the levels were significantly higher in 
patients with stage IV disease than those in patients with 
stage I or stage II/III without a significant difference in 
platelet number. Platelet-derived microvesicles predicted 
distant metastasis with a sensitivity and specificity of 
93.3 and 91.1%, respectively.71 Thus, microvesicles may be 
used as a predictor of disease stage and survival in cancer 
patients. 
Another potential application of microvesicles, 
especially those bearing TF, is the prediction of venous 
thromboembolism.12,13,72 Although cancer patients 
have four to fivefold higher risk to develop venous 
thromboembolism, there are currently no clinical or 
laboratory criteria to decide which patients warrant primary 
thromboprophylaxis.73,74 Ongoing studies are evaluating the 
potential of (tissue factor bearing) microvesicles levels as 
a marker to decide about the appropriateness of primary 
thromboprophylaxis.
 

C o n C l U s i o n

It is now generally accepted that cell-derived microvesicles 
are involved in (patho) physiological processes in humans. 
This review supports the concept that cancer cell-derived 
microvesicles play an important role in cancer biology. This 
field requires further investigation, and additional studies 
are needed to establish their potential relevance as novel 
biomarkers in the detection of cancer and their relevance 
as a new target in anti-cancer therapy.
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