Ischaemic preconditioning: from molecular characterisation to clinical application - part I

N.P. Riksen*, P. Smits**, G.A. Rongen

Departments of Pharmacology-Toxicology and General Internal Medicine, University Medical Centre St Radboud, Nijmegen, the Netherlands, tel.: +31 (0)24-361 36 91, fax: +31 (0)24-361 42 14, e-mail: N.Riksen@aig.umcn.nl, *corresponding author

ABSTRACT

Ischaemic preconditioning is defined as an increased tolerance to ischaemia and reperfusion induced by a previous sublethal period of ischaemia. Since this is the most powerful mechanism for limiting infarct size, other than timely reperfusion, an overwhelming number of studies have addressed the way in which this form of protection occurs. During the short preconditioning period of ischaemia, several trigger substances are released (adenosine, bradykinin, norepinephrine, opioids). By activation of membrane-bound receptors, these substances activate a complex intracellular signalling cascade, which converges on mitochondrial end-effectors, including the ATP-sensitive potassium channel and the mitochondrial permeability transition pore. Activation of this pathway protects cardiomyocytes against both necrosis and apoptosis during a subsequent more prolonged ischaemic episode. The protection afforded by preconditioning lasts only two to three hours, but reappears 24 hours after the preconditioning stimulus. This 'delayed preconditioning' requires synthesis of new proteins, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and heat shock proteins. Additionally, preconditioning is not confined to one organ, but can also limit infarct size in remote, nonpreconditioned organs ('remote preconditioning'). Knowledge of these mechanisms mediating ischaemic preconditioning is essential to understand which drugs are able to mimic preconditioning or interfere with preconditioning in patients at risk for myocardial ischaemia. This review aims to summarise current knowledge regarding the different forms and mechanisms of ischaemic preconditioning.

INTRODUCTION

Despite major advances in prevention and treatment, ischaemic heart disease, and in particular acute myocardial infarction with its late sequelae, remains the leading cause of morbidity and mortality in the Western world and is rapidly gaining its leading position in the developing world. Moreover, due to improved survival from acute myocardial infarction, more and more patients suffer from chronic heart failure, which is an important late complication of infarction. In this regard, continued improvement of strategies aimed at primary and secondary prevention of myocardial infarction is essential. To define suitable targets for intervention, three factors can be identified that ultimately determine the development and outcome of coronary occlusion.^{2,3} The occurrence of coronary artery occlusion is determined by 'vulnerable plaques' (prone to thrombotic complications) and 'vulnerable blood' (prone to thrombosis). Once coronary occlusion has occurred, the clinical outcome is dependent on the 'vulnerability' of the myocardium. Complementary to primary prevention, limitation of infarct size, once occlusion has occurred, is an interesting target which could ultimately attenuate the development of subsequent heart failure.

Until 1986, it was not known whether therapeutic limitation of infarct size was possible at all. In that year, the landmark study by Murry *et al.* was published, in which they described that brief periods of ischaemia (preconditioning ischaemia) in a dog model render the myocardium resistant to a subsequent more prolonged ischaemic period (index ischaemia), since then known as 'ischaemic preconditioning'.⁴ Four cycles of five minutes of coronary occlusion prior to 40 minutes occlusion reduced infarct size induced

** P. Smits was not involved in the handling and review process of this paper.

© 2004 Van Zuiden Communications B.V. All rights reserved.

by these 40 minutes of occlusion by 75% (figure 1). However, the infarct sparing effect was lost when three hours of occlusion was applied, emphasising that timely reperfusion remains indispensable for preconditioning to limit myocardial damage. Since than, an overwhelming number of studies have investigated the underlying mechanism, with the ultimate aim of exploiting this powerful protective mechanism in clinical practice. It was found that ischaemic preconditioning offers two windows of protection in time, called 'early' or 'classical' preconditioning, providing protection immediately after the preconditioning stimulus, and 'late' or 'delayed' preconditioning.5 It was also found that preconditioning ischaemia is able to protect remote cells and organs, which have not been preconditioned by themselves ('remote preconditioning'). 6,7 It is essential to realise that most of these studies were conducted in animal models and that important inter-species differences might exist concerning the mechanism of protection, although the effect of preconditioning could be reproduced in all species studied so far.8 In addition, various in vitro and in vivo human models have been developed, often using surrogate endpoints to study the effect of preconditioning.9 This review is the first of two parts that deal with ischaemic

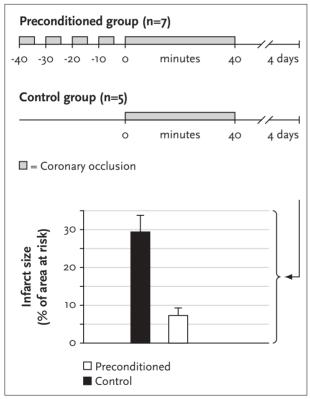


Figure 1
Protocol and results of the original study by Murry et al.⁴
This shows that in the dog heart, four cycles of five-minute coronary occlusion reduced infarct size induced by a subsequent 40-minute coronary occlusion and histologically assessed after four days of reperfusion, by 75%.

preconditioning. In this first part, we focus on the mechanisms responsible for ischaemic preconditioning. Knowledge of these signalling cascades is essential to understand how various drugs could mimic ischaemic preconditioning or interfere with ischaemic preconditioning. Indeed, many drugs that are currently used in clinical practice have the potential to interfer with ischaemic preconditioning, which is especially relevant in patients who are at risk for ischaemia. In the second part we will focus on this pharmacological modulation of ischaemic preconditioning and we will describe the potential therapeutic applications of preconditioning in the near future.¹⁰

EARLY ISCHAEMIC PRECONDITIONING

In the original paper by Murry et al. it was stated that ischaemic preconditioning reduces infarct size, expressed as percentage of the area at risk, by approximately 75%.4 Ever since, this has remained the primary endpoint to describe the effect of ischaemic preconditioning. Moreover, using this endpoint, classical preconditioning has limited infarct size in every species tested so far. That this infarct size limitation would, indeed, be able to attenuate the progression to heart failure after myocardial infarction is suggested by the study by Cohen et al. who showed that in rabbits early ischaemic preconditioning not only reduces infarct size, but also improves systolic myocardial function, measured three weeks after the index ischaemic insult.11 For studying ischaemic preconditioning in humans, especially in vivo, several surrogate endpoints have been developed, such as ECG changes and coronary lactate, which will be discussed in more detail in the second part of the review. Besides infarct size limitation, ischaemic preconditioning has also been shown to attenuate other forms of ischaemic injury, such as stunning and ventricular arrhythmias, although the evidence is less convincing than for infarct size limitation.^{8,12} In the present review, we will focus primarily on necrosis and apoptosis of cardiomyocytes as primary endpoint of ischaemia and reperfusion injury.

The duration of the preconditioning ischaemia as well as the period of reperfusion before the index ischaemia is applied show fairly rigid time frames in order to give full protection. Concerning the preconditioning ischaemic period, protection has been described for periods ranging from one cycle of 1.25 minutes¹³ to five five-minute ischaemia/five-minute reperfusion cycles.¹⁴ It is important to realise that the nature of the preconditioning ischaemic stimulus (amount and duration of ischaemic episodes) influences not only the amount of protection but also the signalling pathways involved.^{13,15} Too many repetitive stimuli might actually abolish preconditioning.¹⁶ Concerning the reperfusion period before the index ischaemia is applied,

the minimum duration lies between 30 seconds and one minute¹⁷ and when the reperfusion period is extended beyond one to two hours, the infarct-limiting effect is no longer evident. 18,19 At this point, it is interesting to mention that in animal models also triggers other than complete ischaemia are able to bring myocardium into the preconditioned state. The observation that myocardium can also be preconditioned by a partial coronary occlusion without reperfusion preceding a sustained period of total occlusion has potential clinical significance considering the nature of thrombus formation in acute myocardial infarction.20 Also, a brief period of acute volume loading resulting in myocardial stretch,21,22 a brief period of rapid pacing23 or transient hyperthermia²⁴ preceding a sustained period of myocardial ischaemia are all shown to limit infarct size, sharing largely similar signalling pathways as classic ischaemic preconditioning.

In recent years, much research has been devoted to elucidating the mechanisms which are responsible for the preconditioning-induced protection to ischaemia/reperfusion injury. When considering the signalling cascade, triggers and mediators that ultimately converge on end-effectors can be differentiated. Triggers are released during the short preconditioning ischaemia and exert their activity only during this period, whereas end-effectors are solely active during the prolonged index ischaemia and actually cause the protection when needed (figure 2).

The first identified and probably most important trigger of classic preconditioning is the endogenous nucleoside adenosine. Myocardial interstitial adenosine concentration increases rapidly during ischaemia.25 In 1991 it was discovered that adenosine A, receptor stimulation during preconditioning ischaemia is essential for protection to occur²⁶ and that intravenous administration of selective adenosine A, receptor agonists instead of preconditioning ischaemia offers similar protection (pharmacological preconditioning).27 Similarly, local intracoronary adenosine administration offers protection similar to ischaemic preconditioning in dog hearts.²⁸ Later it was found both in vitro and in vivo that A₃ receptor stimulation also contributes to ischaemic preconditioning. 15,29 Additional evidence for an important role for adenosine as a trigger of early preconditioning is derived from the observation that pharmacological potentiation of the ischaemia-induced increase in adenosine concentration during preconditioning, by pretreatment with the adenosine-uptake inhibitor dipyridamole, significantly increases the infarct size limiting effect of preconditioning.30 Considering the protective role of adenosine in ischaemia/reperfusion injury, it is important to realise that, in addition to its role as a trigger of ischaemic preconditioning, endogenous adenosine also provides direct protection against both ischaemia and reperfusion injury, independent of preconditioning, which involves stimulation of adenosine A2A receptors (figure 3).31

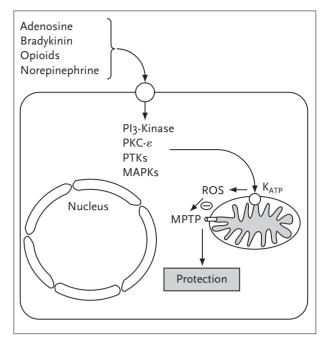
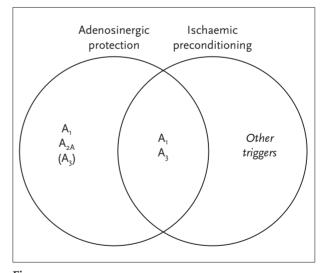



Figure 2
Simplified representation of the mechanism of classical preconditioning

During the preconditioning stimulus, several triggers are released which activate a complex signalling cascade, including phosphatidyl-inositol-3-kinase (PI $_3$ -kinase), protein kinase C (PKC), protein tyrosine kinases (PTK) and mitogen-activated-protein kinases (MAPKs). This signalling cascade inhibits opening of the MPTP via mitoK $_{ATP}$ channel opening and ROS formation.

Figure 3Simplified illustration of the cardioprotection by endogenous adenosine

In addition to the protection afforded by ischaemic preconditioning, adenosine also provides direct cardioprotection during ischaemia and reperfusion.

Later it was found that, in addition to adenosine, several other trigger substances such as bradykinin, 32 opioids, 33 norepinephrine34 and reactive oxygen species (ROS)35 are released during preconditioning ischaemia and contribute to the infarct-sparing effect. Regarding ROS, this seems paradoxical, as ROS are generally assumed to contribute to ischaemia/reperfusion injury. Indeed, ROS act as a trigger to protection during the preconditioning stimulus, whereas during the index ischaemia and reperfusion they contribute to injury.³⁶ Also, a transient elevation in calcium during the preconditioning stimulus might contribute to the protection observed.³⁷ Whereas an important role for nitric oxide (NO) has unequivocally been shown in delayed preconditioning, its role in classic preconditioning is more controversial. Although exogenous administration of NO donors prior to ischaemia can limit infarct size, endogenous NO-synthase derived NO is probably not involved in classic preconditioning.38

It is suggested that because of this redundancy concerning the preconditioning triggers, blockade of one single receptor type only raises the ischaemic threshold required to provide protection, rather than completely blocking protection.³² Moreover, several studies suggest that the contribution of each of these trigger substances to the induction of preconditioning depends on the nature of the stimulus, which should be realised when comparing results from different study protocols.^{15,39}

As previously mentioned, it is also possible to pharmacologically precondition myocardium. Besides the above-mentioned triggers this can also be achieved with norepinephrine,^{4°} endothelin-I,^{4I} acetylcholine⁴² and angiotensin II,⁴³ but these substances are not released in sufficient quantities during ischaemia to contribute to endogenous protection.

After this triggering phase, an intracellular cascade of events finally brings the cell into its protected phenotype (figure 2). Several essential components of this cascade have been identified, although the exact sequence has not yet been fully elucidated. The activation of the intracellular enzyme protein kinase C (PKC) is essential for ischaemic preconditioning.44.45 Several studies have shown that PKC activation is mediated via activation of phosphatidylinositol-3-kinase (PI3K), which is an important upstream signalling molecule.46,47 PI3K activates the serine/threonine kinase Akt, which subsequently inactivates the proapoptotic kinase glycogen synthase kinase-3 (GSK-3).48 Following activation, PKC actually translocates from the cytosol to the particulate fraction where phosphorylation of specific substrates can occur.⁴⁹ Specific activation and translocation of the isoform PKC- ϵ seems to be responsible for ischaemic preconditioning.50 Interestingly, in some animal models only inhibition of PKC during the index ischaemia aborts preconditioning, suggesting that PKC is a mediator and not a trigger.51 Additionally, activation of a

tyrosine kinase mediates early preconditioning, either downstream⁵² or in parallel with PKC.⁵³ Also, each subfamily of the mitogen-activated protein kinases (MAPKs), namely the 42/44-kDa extracellular receptor kinase (ERK), 46/54-kDa c-*jun* kinase (JNK) and 38-kDa p38 MAPK, has been proposed to be involved in the signalling cascade of ischaemic preconditioning (reviewed by Michel *et al.* and Armstrong).^{54,55}

Another essential component of the mechanism leading to early protection after preconditioning is the ATP-sensitive potassium channel (K_{ATP} channel). This channel, which opens when intracellular levels of ATP decline, is the known target of sulphonylureas in the pancreas, but is also present in cardiomyocytes and vascular smooth muscle cells. Cardiomyocytes contain K_{ATP} channels located on both the sarcolemma (sarcK_{ATP} channels) and the mitochondrial inner membrane (mito K_{ATP} channels). These channels have different pharmacological profiles.36 Both channels are blocked by glibenclamide whereas the mitoK_{ATP} channel is selectively blocked by 5-hydroxydecanoate (5-HD). Diazoxide opens the $mitoK_{ATP}$ channel with far greater affinity than the ${\sf sarcK}_{\sf ATP}$ channels. Gross and Auchampach first described the critical role of K_{ATP} channel opening in ischaemic preconditioning, because early preconditioning was completely inhibited by the administration of glibenclamide either before or immediately after the preconditioning ischaemia.⁵⁶ Initially, sarcK_{ATP} channels were held responsible for preconditioning, but recent evidence increasingly favours a role for mitoK_{ATP} channels (already extensively reviewed). 36,57,58 Several studies have shown that the administration of diazoxide is able to mimic ischaemic preconditioning^{59,60} and that 5-HD inhibits preconditioning.61 However, some recent studies still suggest that sarcoK_{ATP} channels are also involved. 62 It appears likely that opening mitoK_{ATP} channels is not only an end-effector of preconditioning, but also a trigger, as opening is also essential during the preconditioning stimulus.³⁶

Which end-effectors are involved and how these end-effectors ultimately provide protection is the most elusive part of ischaemic preconditioning. Inhibition of the sodium/hydrogen exchanger, prevention of osmotic swelling and prevention of cytoskeleton disruption by heat shock protein HSP27 have all been proposed to act as end-effectors. 8.63 Lately, however, accumulating evidence strongly suggests that the various upstream signalling pathways all converge on mitochondrial proteins aimed at limiting in particular reperfusion injury. In order to adequately understand this complex part of the preconditioning cascade, we will briefly focus on mitochondrial function, with particular emphasis on the role of mitochondria in reperfusion injury. Although reperfusion is essential for cardiomyocytes to survive a period of ischaemia, it is well appreciated that

reperfusion itself can expedite cell death, which is known as reperfusion injury.⁶⁴ The mechanism of reperfusion injury differs from ischaemic injury, best illustrated by the role of apoptosis in both forms of injury. The vast majority of studies on this topic conclude that apoptosis, in contrast to necrotic cell death, only occurs or is accelerated during reperfusion and not during ischaemia. 65,66 Reperfusion is characterised by a boost of ROS, which are important mediators of reperfusion injury, as antioxidants, applied during reperfusion, limit cellular death.⁶⁷ Moreover, as apoptosis is an energy-requiring form of cell death, it has been postulated that reperfusion is essential to generate the necessary amount of ATP molecules.⁶⁸ Mitochondria play a prominent role in reperfusion. The most important function of mitochondria is the generation of ATP, by the transfer of electrons on oxygen.⁶⁹ This transfer is associated with a transfer of H⁺ions from the inside to the outside of the mitochondrial inner membrane, thus establishing the mitochondrial transmembrane potential. Subsequently, the passive inward flux of H⁺ions forms the driving force for ATP production. Moreover, during electron transfer, 1 to 5% of ions lose their way and participate in the formation of ROS.⁶⁹ The mitochondrial permeability transition pore (MPTP) is formed by multiprotein complexes capable of forming large nonselective pores in the otherwise highly impermeable inner mitochondrial membrane.7° There is a large body of evidence that this pore, which remains closed during ischaemia, opens during reperfusion.71 This pore is characteristically opened by high mitochondrial [Ca²⁺], oxidative stress, ATP depletion and mitochondrial depolarisation, all pre-eminently present during reperfusion.⁷² Mitochondrial permeability transition during reperfusion results in uncoupling of the respiratory chain, ultimately resulting in ATP depletion and necrosis on the one hand and in matrix swelling and subsequent rupture of the outer membrane leading to release of proapoptotic proteins and apoptosis on the other hand.72 That opening of the MPTP indeed contributes to reperfusion injury is convincingly demonstrated by showing that inhibition of MPTP opening at reperfusion, typically with cyclosporine A (CsA), significantly reduces ischaemia/reperfusion injury.72 A series of recent studies has shown that ischaemic and pharmacological preconditioning ultimately provide protection by inhibiting ROS-induced opening of the MPTP during reperfusion.73-77 Very recently, an extensive and elegant study by Juhaszova et al. showed that ischaemic preconditioning as well as pharmacological preconditioning by a wide variety of drugs act by inhibiting ROS-induced MPTP opening at reperfusion and this study elucidated a great part of the signalling cascade responsible for MPT inhibition.⁷⁸ They showed that cardioprotection with a memory (e.g. by ischaemia, diazoxide, pinacidil, bradykinin) opens mitoK_{ATP} channels, resulting in a subtle mitochondrial swelling, which increases electron transport and

gives rise to a small burst of ROS production, which acts as a messenger to activate PKC, which ultimately converge on phosphorylation of GSK-3 β . Phosphorylation of GSK-3 β inhibits its function and inhibits MPTP opening during reperfusion. Interestingly, GSK-3 β can be inhibited by lithium, which has previously been shown to reduce infarct size.⁴⁸

In conclusion, the infarct size limiting effect of ischaemic preconditioning seems to be largely mediated by inhibition of reperfusion injury and subsequent apoptosis. There is convincing evidence that in myocardial infarction, both necrosis and apoptosis are involved.⁷⁹ Various animal studies have shown significant reduction in myocardial infarct size using inhibitors of apoptosis, such as caspase inhibitors, during reperfusion.⁸⁰⁻⁸³ Moreover, caspase or endonuclease inhibition after myocardial infarction attenuates ventricular remodelling and improves contractile function.⁸⁰⁻⁸⁴ Gottlieb *et al.* were the first to show that in an *in vitro* model of rabbit cardiomyocytes, ischaemic preconditioning inhibits ischaemia/reperfusion-induced apoptosis.⁸⁵ Later, this was confirmed *in vivo* in a rat model of myocardial ischaemic preconditioning.¹⁴

With increasing emphasis on the pivotal role of limitation of reperfusion injury in the infarct size limitation by ischaemic preconditioning, several studies explored whether interventions during reperfusion, rather than before ischaemia, could also limit infarct size. This is of great potential importance, as ischaemic insults are seldom predictable and therefore interventions at the time of reperfusion are more suited to most clinical scenarios. Indeed, intermittent short repetitive interruptions to reperfusion at the very onset of reperfusion were shown to provide similar protection to ischaemic preconditioning in dogs and rats, via activation of the PI₃K-Akt pathway^{86,87} (reviewed by Hausenloy *et al*).⁸⁸

DELAYED ISCHAEMIC PRECONDITIONING

In 1993, it was first described that the protective effect of ischaemic preconditioning, which was previously thought to be a transient phenomenon, reappears 24 hours after the preconditioning ischaemic period and results in a delayed protected phenotype.^{5,89} Although not as powerful as the early protection provided by preconditioning (infarct size reduction on average 50%),^{5,90} this delayed phase of protection lasts up to 72 hours and, in that respect, might be more therapeutically applicable in clinical practice.⁹⁰ Moreover, this late phase of preconditioning also provides robust protection against myocardial stunning.⁹¹ This delayed phase of protection is also called 'late' precondi-

tioning or the 'second window of protection' (SWOP). Although classical and delayed protection largely share common signalling pathways, several essential differences are present (figure 4). In this review, we only briefly highlight the differences between classical and delayed preconditioning, the latter being more extensively reviewed elsewhere. 8,92 The distinctive time course of delayed preconditioning and its complete inhibition by protein synthesis inhibitors93 suggest that synthesis of new proteins is required to obtain the protected phenotype, which is the most striking difference between classical and delayed preconditioning. It is important to realise that the mechanisms mediating protection against infarction and against stunning are not the same, although many pathways are shared, evidenced by the fact that adenosine and K_{ATP} channels play an obligatory role in protection against infarction, 94,95 but not against stunning.96

The most important difference between early and late preconditioning regarding the trigger phase is that in delayed preconditioning, in addition to the triggers which are also active in classical preconditioning, endogenous nitric oxide (NO) also provides delayed protection against both stunning and infarction, most likely being derived from endothelial NO synthase (eNOS). ^{97,98} Subsequently, these triggers ini-

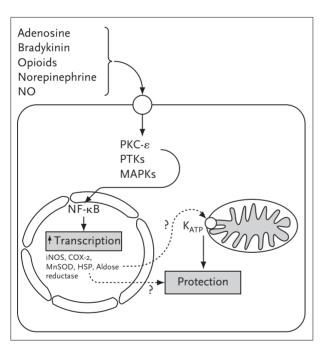


Figure 4
Schematical illustration of the mechanism of delayed preconditioning

In contrast to classical preconditioning, nitric oxide (NO) is an important trigger of delayed protection. Activation of the transcriptional regulator nuclear factor- κB (NF- κB) causes increased transcription of several proteins. Opening of mitochondrial K_{ATP} channels is necessary for the ultimate infarct limitation, but how these channels are opened is still a matter of debate.

tiate a signalling cascade ultimately resulting in increased transcription of cardioprotective genes. Indispensable for this cascade are PKC99 and, probably downstream to PKC, tyrosine kinases¹⁰⁰ and most likely also other protein kinases, which activate the important transcriptional regulator nuclear factor-κB (NF-κB).¹⁰¹ Consequently, increased transcription of protective proteins occurs, several of which have been identified so far. Interestingly, NO synthase is also essential during the index ischaemic insult for delayed protection to occur. However, in contrast to the trigger phase in which eNOS is probably involved, during index ischaemia inducible NOS (iNOS) is upregulated and inhibition of iNOS completely abrogates protection during this index ischaemia. 102 Similarly, selective inhibition during the index ischaemia of cyclooxygenase (COX)-2, which was upregulated 24 hours after the preconditioning stimulus, completely blocked protection against stunning as well as infarction. 103 Other proteins that are upregulated and are important in delayed preconditioning are superoxide dismutase, which is an important antioxidant enzyme, 104 and heat shock proteins, although some controversy still exists about the latter.8 How these upregulated proteins subsequently provide protection against ischaemic injury has not yet been unravelled. However, there is evidence that activation of protein tyrosine kinases is also necessary during the index ischaemia for protection to occur, suggesting a role for post-translational modification of the upregulated proteins. 105 Finally, it is known that opening of K_{ATP} channels during the index ischaemia is necessary for the infarct-sparing effect of delayed preconditioning, whereas delayed protection against stunning does not seem to require K_{ATP} channel opening. 106 The observation that 5-HD during the preconditioning ischaemia inhibits delayed protection favours a role for the $mitoK_{ATP}$ channel rather than the sarcolemmal K_{ATP} channels.¹⁰⁷ Although K_{ATP} channel opening seems to be a final common pathway on which the signalling cascades converge, it is not yet well understood how opening of these channels provides protection. Similar to early preconditioning, several pharmacological interventions are able to trigger delayed protection, mimicking ischaemic preconditioning. In this regard, brief exposure to selective adenosine A_r and A₂ receptor agonists, exogenous NO donors, ROS-generating substances, bradykinin, δ-opioid agonists and norepinephrine provide delayed protection to infarction.⁸ This offers possibilities for future exploitation of this delayed mechanism in clinical practice.

REMOTE ISCHAEMIC PRECONDITIONING

In 1993, Przyklenk *et al.* extended the initial view on ischaemic preconditioning tremendously by demonstrating that brief preconditioning occlusions of the circumflex

artery could also limit infarct size from subsequent sustained occlusion of the left anterior descending artery in the dog heart.⁶ This was called 'remote intracardiac preconditioning'. Later, it was shown that remote ischaemic preconditioning was not limited to one particular organ system. Transient occlusions of the mesenteric artery limited myocardial infarct size by a subsequent prolonged coronary occlusion, 7,108 since than known as 'inter-organ preconditioning', 'remote preconditioning' or 'preconditioning at a distance'. Since this original finding, remote ischaemic preconditioning of the myocardium has been accomplished by transient circulatory occlusion of the short bowel, 7,109 kidney 110 and hind limb, 111,112 but not of the brain. 113 Similarly, preconditioning the limb in a pig model limited infarct size in several remote skeletal muscles after a subsequent prolonged ischaemia 114 and transient ischaemia of the liver rendered the kidney more resistant to subsequent more severe ischaemia in rats.¹¹⁵

Early remote ischaemic preconditioning has been shown in rats, 7 rabbits $^{\text{II}6}$ and pigs, $^{\text{II}7}$ limiting myocardial infarct size to a similar extent as classical preconditioning. $^{7,\text{II}2,\text{II}8}$ Additionally, a second window of remote protection of the myocardium by applying a short period of preconditioning ischaemia to the small intestine has been shown in rats and rabbits. $^{\text{II}6,\text{II}9,\text{I2}0}$

The mechanism underlying remote ischaemic preconditioning is not yet as well defined as the mechanisms mediating classic preconditioning. Interestingly, in the first study on inter-organ remote preconditioning, Gho et al. already identified two important clues for understanding the mechanism of protection.7 First, ganglionic blockade with hexamethonium prior to the preconditioning stimulus abolished cardioprotection, suggesting neuronal involvement. Secondly, reperfusion after the preconditioning ischaemia was essential, suggesting that at reperfusion substances are released in the mesenteric bed that stimulate afferent neurofibres or directly protect the heart. Although several other studies confirmed involvement of a neurogenic pathway in mesenteric preconditioning of the myocardium, 109,121 preconditioning with a more prolonged mesenteric occlusion was not abolished by hexamethonium. 122 Additional evidence that a humoral factor is also involved in remote preconditioning comes from the observation that in rabbits cardioprotection by a preceding short period of coronary occlusion can be transferred to a nonpreconditioned heart via coronary effluent transfusion and even transfusion of whole blood. 123-125 This transferred protection is not mediated via adenosine or norepinephrine in the effluent and can be abolished by the opioid-antagonist naloxone. Additional studies on mesenteric preconditioning of the myocardium showed that capsaicine-sensitive sensory nerves might be involved116 and that the protection is abolished by pretreatment with naloxone¹²⁶ and a bradykinin receptor antagonist¹²¹ before the transient mesenteric occlusion. Moreover, signal

transduction via PKC is proposed, based on the findings that inhibition of PKC before as well as after the preconditioning stimulus inhibits protection and that brief mesenteric artery occlusion induces a rapid translocation of PKC- ϵ from the cytosol to membrane fractions in cardiomyocytes. 122,127 In a rabbit model, it was shown that cardioprotection by a brief renal artery occlusion is totally abolished by adenosine antagonism either before the renal occlusion or before the subsequent coronary occlusion, proposing a dual role for adenosine as trigger and mediator of remote preconditioning. II2,II8 In line with these observations, Liem et al. recently described evidence that in remote preconditioning with small intestine ischaemia, locally released adenosine triggers afferent nerves which in turn leads to stimulation of cardiac adenosine receptors. 109 Finally, very limited evidence suggests that remote preconditioning also occurs in humans in vivo, using a surrogate marker of ischaemic damage. Kharbanda et al. showed that three five-minute cycles of forearm ischaemia prevents reduction in acetylcholine-induced vasodilation after 20 minutes of ischaemia of the contralateral arm. 117

ACKNOWLEDGEMENTS

N.P. Riksen is an MD clinical research trainee financially supported by the Netherlands Organisation of Scientific Research (ZonMw). The contribution of G.A. Rongen was made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

NOTE

This review is the first of two parts. The second part will appear in the December issue of this Journal.

REFERENCES

- Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001;104:2746-53.
- Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003;108:1664-72.
- Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003;108:1772-8.
- Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36.
- Kuzuya T, Hoshida S, Yamashita N, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 1993;72:1293-9.

- Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993;87:893-9.
- Gho BC, Schoemaker RG, Doel MA van den, Duncker DJ, Verdouw PD.
 Myocardial protection by brief ischemia in noncardiac tissue. Circulation 1996;94:2193-200.
- Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 2003;83:1113-51.
- Kloner RA, Speakman MT, Przyklenk K. Ischemic preconditioning: a plea for rationally targeted clinical trials. Cardiovasc Res 2002;55:526-33.
- Riksen NP, Smits P, Rongen GA. Ischaemic preconditioning: from molecular characterization to clinical application. Part II. Neth J Med. In press 2004.
- Cohen MV, Yang XM, Neumann T, Heusch G, Downey JM. Favorable remodeling enhances recovery of regional myocardial function in the weeks after infarction in ischemically preconditioned hearts. Circulation 2000;102:579-83.
- Taggart P, Yellon DM. Preconditioning and arrhythmias. Circulation 2002;106:2999-3001.
- Barbosa V, Sievers RE, Zaugg CE, Wolfe CL. Preconditioning ischemia time determines the degree of glycogen depletion and infarct size reduction in rat hearts. Am Heart J 1996;131:224-30.
- Piot CA, Padmanaban D, Ursell PC, Sievers RE, Wolfe CL. Ischemic preconditioning decreases apoptosis in rat hearts in vivo. Circulation 1997;96:1598-604.
- 15. Liem DA, Doel MA van den, Zeeuw S de, Verdouw PD, Duncker DJ. Role of adenosine in ischemic preconditioning in rats depends critically on the duration of the stimulus and involves both A(1) and A(3) receptors. Cardiovasc Res 2001;51:701-8.
- Iliodromitis EK, Kremastinos DT, Katritsis DG, Papadopoulos CC, Hearse
 DJ. Multiple cycles of preconditioning cause loss of protection in open-chest rabbits. J Mol Cell Cardiol 1997;29:915-20.
- Alkhulaifi AM, Pugsley WB, Yellon DM. The influence of the time period between preconditioning ischemia and prolonged ischemia on myocardial protection. Cardioscience 1993;4:163-9.
- Li YW, Whittaker P, Kloner RA. The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrhythmia. Am Heart J 1992;123:346-53.
- Burckhartt B, Yang XM, Tsuchida A, Mullane KM, Downey JM, Cohen MV.
 Acadesine extends the window of protection afforded by ischaemic preconditioning in conscious rabbits. Cardiovasc Res 1995;29:653-7.
- Koning MM, Simonis LA, Zeeuw S de, Nieukoop S, Post S, Verdouw PD.
 Ischaemic preconditioning by partial occlusion without intermittent reperfusion. Cardiovasc Res 1994;28:1146-51.
- Ovize M, Kloner RA, Przyklenk K. Stretch preconditions canine myocardium.
 Am J Physiol 1994;266:H137-H146.
- 22. Gysembergh A, Margonari H, Loufoua J, et al. Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabbit heart. Am J Physiol 1998;274:H955-64.
- Koning MM, Gho BC, Klaarwater E van, Opstal RL, Duncker DJ, Verdouw PD. Rapid ventricular pacing produces myocardial protection by nonischemic activation of KATP+ channels. Circulation 1996;93:178-86.
- 24. Yamashita N, Hoshida S, Taniguchi N, Kuzuya T, Hori M. Whole-body hyperthermia provides biphasic cardioprotection against ischemia/ reperfusion injury in the rat. Circulation 1998;98:1414-21.

- Wylen DG van, Schmit TJ, Lasley RD, Gingell RL, Mentzer RM Jr. Cardiac microdialysis in isolated rat hearts: interstitial purine metabolites during ischemia. Am J Physiol 1992;262:H1934-8.
- 26. Liu GS, Thornton J, Winkle DM van, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 1991;84:350-6.
- Thornton JD, Liu GS, Olsson RA, Downey JM. Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 1992;85:659-65.
- 28. Yao Z, Gross GJ. A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation 1994;89:1229-36.
- Liu GS, Richards SC, Olsson RA, Mullane K, Walsh RS, Downey JM.
 Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc Res 1994;28:1057-61.
- Miura T, Ogawa T, Iwamoto T, Shimamoto K, Iimura O. Dipyridamole potentiates the myocardial infarct size-limiting effect of ischemic preconditioning. Circulation 1992;86:979-85.
- Headrick JP, Hack B, Ashton KJ. Acute adenosinergic cardioprotection in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol 2003;285:H1797-818.
- Goto M, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 1995;77:611-21.
- Schultz JE, Hsu AK, Gross GJ. Ischemic preconditioning in the intact rat heart is mediated by delta1- but not mu- or kappa-opioid receptors.
 Circulation 1998;97:1282-9.
- 34. Hu K, Nattel S. Mechanisms of ischemic preconditioning in rat hearts.

 Involvement of alpha 1B-adrenoceptors, pertussis toxin-sensitive G proteins, and protein kinase C. Circulation 1995;92:2259-65.
- Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 1997;29:207-16.
- O'Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 2004;94:420-32.
- Miyawaki H, Ashraf M. Ca2+ as a mediator of ischemic preconditioning. Circ Res 1997;80:790-9.
- 38. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 2001;33:1897-918.
- Schulz R, Post H, Vahlhaus C, Heusch G. Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation 1998;98:1022-9.
- 40. Tsuchida A, Liu Y, Liu GS, Cohen MV, Downey JM. Alpha 1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 1994;75:576-85.
- Wang P, Gallagher KP, Downey JM, Cohen MV. Pretreatment with endothelin-1 mimics ischemic preconditioning against infarction in isolated rabbit heart.
 J Mol Cell Cardiol 1996;28:579-88.
- 42. Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ Res 2001;89:273-8.

- Liu Y, Tsuchida A, Cohen MV, Downey JM. Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 1995;27:883-92.
- 44. Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee A. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 1995;76:73-81.
- 45. Ytrehus K, Liu Y, Downey JM. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 1994;266:H1145-52.
- Tong H, Chen W, Steenbergen C, Murphy E. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res 2000:87:309-15.
- Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res 2004;94:7-16.
- Tong H, Imahashi K, Steenbergen C, Murphy E. Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res 2002;90:377-9.
- Mackay K, Mochly-Rosen D. Localization, anchoring, and functions of protein kinase C isozymes in the heart. J Mol Cell Cardiol 2001;33:1301-7.
- Gray MO, Karliner JS, Mochly-Rosen D. A selective epsilon-protein kinase C antagonist inhibits protection of cardiac myocytes from hypoxiainduced cell death. J Biol Chem 1997;272:30945-51.
- Yang XM, Sato H, Downey JM, Cohen MV. Protection of ischemic preconditioning is dependent upon a critical timing sequence of protein kinase C activation. J Mol Cell Cardiol 1997;29:991-9.
- Baines CP, Wang L, Cohen MV, Downey JM. Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning's anti-infarct effect in the rabbit heart. J Mol Cell Cardiol 1998;30:383-92.
- Vahlhaus C, Schulz R, Post H, Rose J, Heusch G. Prevention of ischemic preconditioning only by combined inhibition of protein kinase C and protein tyrosine kinase in pigs. J Mol Cell Cardiol 1998;30:197-209.
- Michel MC, Li Y, Heusch G. Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol 2001;363:245-66.
- Armstrong SC. Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res 2004;61:427-36.
- Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223-33.
- 57. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 2003;285:H921-30.
- Oldenburg O, Cohen MV, Yellon DM, Downey JM. Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res 2002;55:429-37.
- Baines CP, Liu GS, Birincioglu M, Critz SD, Cohen MV, Downey JM.
 Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. Am J Physiol 1999;276:H1361-8.
- 60. Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 1997;81:1072-82.
- 61. Auchampach JA, Grover GJ, Gross GJ. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 1992;26:1054-62.
- Suzuki M, Sasaki N, Miki T, et al. Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest 2002;109:509-16.

- 63. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning. Cardiovasc Res 2001;52:181-98.
- 64. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword?

 | Clin Invest 1985;76:1713-9.
- 65. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621-8.
- 66. Hausenloy DJ, Yellon DM. The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 2003;35:339-41.
- 67. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 2004;61:461-70.
- 68. Zhao ZQ, Nakamura M, Wang NP, et al. Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 2000;45:651-60.
- 69. Duchen M. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 2004;25:365-451.
- 70. Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003;93:292-301.
- Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995;307(Pt 1):93-8.
- Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res 2004;61:372-85.
- Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR. Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 2004;287:H841-9.
- 74. Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 2003;60:617-25.
- Hausenloy D, Wynne A, Duchen M, Yellon D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 2004;109:1714-7.
- Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 2002;55:534-43.
- Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP.
 Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 2003;549:513-24.
- Juhaszova M, Zorov DB, Kim SH, et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 2004;113:1535-49.
- Krijnen PA, Nijmeijer R, Meijer CJ, Visser CA, Hack CE, Niessen HW. Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 2002;55:801-11.
- Zhao ZQ, Morris CD, Budde JM, et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res 2003;59:132-42.
- Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/ reperfusion injury in rats by a caspase inhibitor. Circulation 1998;97:276-81.
- 82. Holly TA, Drincic A, Byun Y, et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 1999;31:1709-15.
- 83. Mocanu MM, Baxter GF, Yellon DM. Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury.

 Br J Pharmacol 2000;130:197-200.

- 84. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I. Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 2004;43:295-301.
- Gottlieb RA, Gruol DL, Zhu JY, Engler RL. Preconditioning rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 1996;97:2391-8.
- Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003;285:H579-88.
- 87. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: a form of 'modified reperfusion' protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 2004;95:230-2.
- Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004;61:448-60.
- 89. Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993;88:1264-72.
- 90. Baxter GF, Goma FM, Yellon DM. Characterisation of the infarct-limiting effect of delayed preconditioning: time course and dose-dependency studies in rabbit myocardium. Basic Res Cardiol 1997;92:159-67.
- Sun JZ, Tang XL, Knowlton AA, Park SW, Qiu Y, Bolli R. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest 1995;95:388-403.
- 92. Bolli R. The late phase of preconditioning. Circ Res 2000;87:972-83.
- Rizvi A, Tang XL, Qiu Y, et al. Increased protein synthesis is necessary for the development of late preconditioning against myocardial stunning.
 Am J Physiol 1999;277:H874-84.
- 94. Baxter GF, Marber MS, Patel VC, Yellon DM. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 1994;90:2993-3000.
- Bernardo NL, D'Angelo M, Okubo S, Joy A, Kukreja RC. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol 1999;276:H1323-30.
- Baxter GF. Role of adenosine in delayed preconditioning of myocardium.
 Cardiovasc Res 2002;55:483-94.
- 97. Bolli R, Manchikalapudi S, Tang XL, et al. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res 1997;81:1094-107.
- Qiu Y, Rizvi A, Tang XL, et al. Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol 1997;273:H2931-36.
- Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischaemia in rabbit myocardium.
 Br J Pharmacol 1995;115:222-4.
- 100. Ping P, Zhang J, Zheng YT, et al. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res 1999;85:542-50.
- 101. Xuan YT, Tang XL, Banerjee S, et al. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits.

 Circ Res 1999;84:1095-109.

- 102. Takano H, Manchikalapudi S, Tang XL, et al. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation 1998;98:441-9.
- 103. Shinmura K, Tang XL, Wang Y, et al. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci USA 2000;97:10197-202.
- 104. Hoshida S, Yamashita N, Otsu K, Hori M. The importance of manganese superoxide dismutase in delayed preconditioning: involvement of reactive oxygen species and cytokines. Cardiovasc Res 2002;55:495-505.
- 105. Dawn B, Xuan YT, Qiu Y, et al. Bifunctional role of protein tyrosine kinases in late preconditioning against myocardial stunning in conscious rabbits. Circ Res 1999;85:1154-63.
- 106. Jenkins DP, Pugsley WB, Yellon DM. Ischaemic preconditioning in a model of global ischaemia: infarct size limitation, but no reduction of stunning. J Mol Cell Cardiol 1995;27:1623-32.
- 107. Takano H, Tang XL, Bolli R. Differential role of K(ATP) channels in late preconditioning against myocardial stunning and infarction in rabbits. Am J Physiol Heart Circ Physiol 2000;279:H2350-9.
- 108. McClanahan TB, Nao BS, Wolke LJ, Martin BJ, Mertz TE, Gallagher KP.
 Brief renal occlusion and reperfusion reduces myocardial infarct size in rabbits. FASEB J 1993;7:A118.
- 109.Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ. Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol 2002;283:H29-37.
- 110. Pell TJ, Baxter GF, Yellon DM, Drew GM. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol 1998;275:H1542-7.
- 111. Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 1997;96:1641-6.
- 112. Weinbrenner C, Nelles M, Herzog N, Sarvary L, Strasser RH. Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-dependent pathway. Cardiovasc Res 2002;55:590-601.
- 113. Zeeuw S de, Lameris TW, Duncker DJ, et al. Cardioprotection in pigs by exogenous norepinephrine but not by cerebral ischemia-induced release of endogenous norepinephrine. Stroke 2001;32:767-74.
- 114. Addison PD, Neligan PC, Ashrafpour H, et al. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol 2003;285:H1435-43.
- 115. Ates E, Genc E, Erkasap N, et al. Renal protection by brief liver ischemia in rats. Transplantation 2002;74:1247-51.
- 116. Tang ZL, Dai W, Li YJ, Deng HW. Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine. Naunyn Schmiedebergs Arch Pharmacol 1999;359:243-7.
- 117. Kharbanda RK, Mortensen UM, White PA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 2002;106:2881-3.
- 118. Takaoka A, Nakae I, Mitsunami K, et al. Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of 'remote preconditioning'. J Am Coll Cardiol 1999;33:556-64.

- 119. Xiao L, Lu R, Hu CP, Deng HW, Li YJ. Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide. Eur J Pharmacol 2001;427:131-5.
- 120. Wang Y, Xu H, Mizoguchi K, Oe M, Maeta H. Intestinal ischemia induces late preconditioning against myocardial infarction: a role for inducible nitric oxide synthase. Cardiovasc Res 2001:49:391-8.
- 121. Schoemaker RG, Heijningen CL van. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 2000;278:H1571-6.
- 122. Wang YP, Maeta H, Mizoguchi K, Suzuki T, Yamashita Y, Oe M. Intestinal ischemia preconditions myocardium: role of protein kinase C and mito-

chondrial K(ATP) channel. Cardiovasc Res 2002;55:576-82.

123. Dickson EW, Blehar DJ, Carraway RE, Heard SO, Steinberg G, Przyklenk K. Naloxone blocks transferred preconditioning in isolated rabbit hearts.
| Mol Cell Cardiol 2001;33:1751-6.

- 124. Dickson EW, Lorbar M, Porcaro WA, et al. Rabbit heart can be 'preconditioned' via transfer of coronary effluent. Am J Physiol 1999;277:H2451-7.
- 125. Dickson EW, Reinhardt CP, Renzi FP, Becker RC, Porcaro WA, Heard SO. Ischemic preconditioning may be transferable via whole blood transfusion: preliminary evidence. J Thromb Thrombolysis 1999;8:123-9.
- 126. Patel HH, Moore J, Hsu AK, Gross GJ. Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol 2002;34:1317-23.
- 127. Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A. Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res 2002;55:583-9.