
N O V E M B E R  2 0 0 4 ,  V O L .  6 2 ,  N O .  1 0

A B S T R A C T

Ischaemic preconditioning is defined as an increased

tolerance to ischaemia and reperfusion induced by a

previous sublethal period of ischaemia. Since this is the

most powerful mechanism for limiting infarct size, other

than timely reperfusion, an overwhelming number of

studies have addressed the way in which this form of

protection occurs. During the short preconditioning

period of ischaemia, several trigger substances are released

(adenosine, bradykinin, norepinephrine, opioids). By acti-

vation of membrane-bound receptors, these substances

activate a complex intracellular signalling cascade, which

converges on mitochondrial end-effectors, including the

ATP-sensitive potassium channel and the mitochondrial

permeability transition pore. Activation of this pathway pro-

tects cardiomyocytes against both necrosis and apoptosis

during a subsequent more prolonged ischaemic episode.

The protection afforded by preconditioning lasts only two to

three hours, but reappears 24 hours after the precondi-

tioning stimulus. This ‘delayed preconditioning’ requires

synthesis of new proteins, including inducible nitric oxide

synthase (iNOS), cyclooxygenase-2 (COX-2) and heat shock

proteins. Additionally, preconditioning is not confined to

one organ, but can also limit infarct size in remote, non-

preconditioned organs (‘remote preconditioning’).

Knowledge of these mechanisms mediating ischaemic

preconditioning is essential to understand which drugs

are able to mimic preconditioning or interfere with pre-

conditioning in patients at risk for myocardial ischaemia.

This review aims to summarise current knowledge regard-

ing the different forms and mechanisms of ischaemic

preconditioning.

I N T R O D U C T I O N

Despite major advances in prevention and treatment,

ischaemic heart disease, and in particular acute myocardial

infarction with its late sequelae, remains the leading cause

of morbidity and mortality in the Western world and is

rapidly gaining its leading position in the developing world.1

Moreover, due to improved survival from acute myocardial

infarction, more and more patients suffer from chronic

heart failure, which is an important late complication of

infarction. In this regard, continued improvement of

strategies aimed at primary and secondary prevention of

myocardial infarction is essential. To define suitable targets

for intervention, three factors can be identified that ultim-

ately determine the development and outcome of coronary

occlusion.2,3 The occurrence of coronary artery occlusion

is determined by ‘vulnerable plaques’ (prone to thrombotic

complications) and ‘vulnerable blood’ (prone to thrombosis).

Once coronary occlusion has occurred, the clinical outcome

is dependent on the ‘vulnerability’ of the myocardium.

Complementary to primary prevention, limitation of infarct

size, once occlusion has occurred, is an interesting target

which could ultimately attenuate the development of sub-

sequent heart failure.

Until 1986, it was not known whether therapeutic limit-

ation of infarct size was possible at all. In that year, the

landmark study by Murry et al. was published, in which

they described that brief periods of ischaemia (precondi-

tioning ischaemia) in a dog model render the myocardium

resistant to a subsequent more prolonged ischaemic period

(index ischaemia), since then known as ‘ischaemic precondi-

tioning’.4 Four cycles of five minutes of coronary occlusion

prior to 40 minutes occlusion reduced infarct size induced
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by these 40 minutes of occlusion by 75% (figure 1). However,

the infarct sparing effect was lost when three hours of

occlusion was applied, emphasising that timely reperfusion

remains indispensable for preconditioning to limit myocar-

dial damage. Since than, an overwhelming number of

studies have investigated the underlying mechanism, with

the ultimate aim of exploiting this powerful protective

mechanism in clinical practice. It was found that ischaemic

preconditioning offers two windows of protection in time,

called ‘early’ or ‘classical’ preconditioning, providing pro-

tection immediately after the preconditioning stimulus,

and ‘late’ or ‘delayed’ preconditioning.5 It was also found

that preconditioning ischaemia is able to protect remote

cells and organs, which have not been preconditioned by

themselves (‘remote preconditioning’).6,7 It is essential to

realise that most of these studies were conducted in animal

models and that important inter-species differences might

exist concerning the mechanism of protection, although

the effect of preconditioning could be reproduced in all

species studied so far.8 In addition, various in vitro and

in vivo human models have been developed, often using

surrogate endpoints to study the effect of preconditioning.9

This review is the first of two parts that deal with ischaemic

preconditioning. In this first part, we focus on the mech-

anisms responsible for ischaemic preconditioning. Know-

ledge of these signalling cascades is essential to understand

how various drugs could mimic ischaemic preconditioning

or interfere with ischaemic preconditioning. Indeed, many

drugs that are currently used in clinical practice have

the potential to interfer with ischaemic preconditioning,

which is especially relevant in patients who are at risk for

ischaemia. In the second part we will focus on this phar-

macological modulation of ischaemic preconditioning

and we will describe the potential therapeutic applications

of preconditioning in the near future.10

E A R L Y  I S C H A E M I C  P R E C O N D I T I O N I N G

In the original paper by Murry et al. it was stated that

ischaemic preconditioning reduces infarct size, expressed

as percentage of the area at risk, by approximately 75%.4

Ever since, this has remained the primary endpoint to

describe the effect of ischaemic preconditioning. Moreover,

using this endpoint, classical preconditioning has limited

infarct size in every species tested so far. That this infarct

size limitation would, indeed, be able to attenuate the

progression to heart failure after myocardial infarction is

suggested by the study by Cohen et al. who showed that

in rabbits early ischaemic preconditioning not only reduces

infarct size, but also improves systolic myocardial function,

measured three weeks after the index ischaemic insult.11

For studying ischaemic preconditioning in humans, especially

in vivo, several surrogate endpoints have been developed,

such as ECG changes and coronary lactate, which will be

discussed in more detail in the second part of the review.

Besides infarct size limitation, ischaemic preconditioning

has also been shown to attenuate other forms of ischaemic

injury, such as stunning and ventricular arrhythmias,

although the evidence is less convincing than for infarct

size limitation.8,12 In the present review, we will focus

primarily on necrosis and apoptosis of cardiomyocytes as

primary endpoint of ischaemia and reperfusion injury.

The duration of the preconditioning ischaemia as well as

the period of reperfusion before the index ischaemia is

applied show fairly rigid time frames in order to give full

protection. Concerning the preconditioning ischaemic

period, protection has been described for periods ranging

from one cycle of 1.25 minutes13 to five five-minute

ischaemia/five-minute reperfusion cycles.14 It is important

to realise that the nature of the preconditioning ischaemic

stimulus (amount and duration of ischaemic episodes)

influences not only the amount of protection but also the

signalling pathways involved.13,15 Too many repetitive stimuli

might actually abolish preconditioning.16 Concerning the

reperfusion period before the index ischaemia is applied,

Riksen, et al. Ischaemic preconditioning.

0

10

30

20

In
fa

rc
t s

iz
e

(%
 o

f a
re

a 
at

 r
is

k)

= Coronary occlusion

400

400-10-20-30-40

Preconditioned group (n=7)

Control group (n=5)

minutes

minutes

4 days

4 days

Preconditioned
Control

Figure 1

Protocol and results of the original study by Murry et al.4

This shows that in the dog heart, four cycles of five-minute coronary

occlusion reduced infarct size induced by a subsequent 40-minute

coronary occlusion and histologically assessed after four days of reper-

fusion, by 75%.
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the minimum duration lies between 30 seconds and one

minute17 and when the reperfusion period is extended

beyond one to two hours, the infarct-limiting effect is no

longer evident.18,19 At this point, it is interesting to mention

that in animal models also triggers other than complete

ischaemia are able to bring myocardium into the precon-

ditioned state. The observation that myocardium can also

be preconditioned by a partial coronary occlusion without

reperfusion preceding a sustained period of total occlusion

has potential clinical significance considering the nature

of thrombus formation in acute myocardial infarction.20

Also, a brief period of acute volume loading resulting in

myocardial stretch,21,22 a brief period of rapid pacing23 or

transient hyperthermia24 preceding a sustained period of

myocardial ischaemia are all shown to limit infarct size,

sharing largely similar signalling pathways as classic

ischaemic preconditioning.

In recent years, much research has been devoted to eluci-

dating the mechanisms which are responsible for the pre-

conditioning-induced protection to ischaemia/reperfusion

injury. When considering the signalling cascade, triggers

and mediators that ultimately converge on end-effectors

can be differentiated. Triggers are released during the

short preconditioning ischaemia and exert their activity

only during this period, whereas end-effectors are solely

active during the prolonged index ischaemia and actually

cause the protection when needed (figure 2).

The first identified and probably most important trigger

of classic preconditioning is the endogenous nucleoside

adenosine. Myocardial interstitial adenosine concentra-

tion increases rapidly during ischaemia.25 In 1991 it was

discovered that adenosine A1 receptor stimulation during

preconditioning ischaemia is essential for protection to

occur26 and that intravenous administration of selective

adenosine A1 receptor agonists instead of preconditioning

ischaemia offers similar protection (pharmacological

preconditioning).27 Similarly, local intracoronary adenosine

administration offers protection similar to ischaemic pre-

conditioning in dog hearts.28 Later it was found both in vitro

and in vivo that A3 receptor stimulation also contributes

to ischaemic preconditioning.15,29 Additional evidence for

an important role for adenosine as a trigger of early precon-

ditioning is derived from the observation that pharmaco-

logical potentiation of the ischaemia-induced increase in

adenosine concentration during preconditioning, by pre-

treatment with the adenosine-uptake inhibitor dipyridamole,

significantly increases the infarct size limiting effect of

preconditioning.30 Considering the protective role of adeno-

sine in ischaemia/reperfusion injury, it is important to

realise that, in addition to its role as a trigger of ischaemic

preconditioning, endogenous adenosine also provides

direct protection against both ischaemia and reperfusion

injury, independent of preconditioning, which involves

stimulation of adenosine A2A receptors (figure 3).31

Riksen, et al. Ischaemic preconditioning.
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Simplified representation of the mechanism of classical
preconditioning

During the preconditioning stimulus, several triggers are released which

activate a complex signalling cascade, including phosphatidyl-inositol-

3-kinase (PI3-kinase), protein kinase C (PKC), protein tyrosine kinases

(PTK) and mitogen-activated-protein kinases (MAPKs). This signalling

cascade inhibits opening of the MPTP via mitoKATP channel opening

and ROS formation.
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Figure 3

Simplified illustration of the cardioprotection by endogenous
adenosine

In addition to the protection afforded by ischaemic preconditioning,

adenosine also provides direct cardioprotection during ischaemia and

reperfusion.
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Later it was found that, in addition to adenosine, several

other trigger substances such as bradykinin,32 opioids,33

norepinephrine34 and reactive oxygen species (ROS)35 are

released during preconditioning ischaemia and contribute

to the infarct-sparing effect. Regarding ROS, this seems

paradoxical, as ROS are generally assumed to contribute

to ischaemia/reperfusion injury. Indeed, ROS act as a

trigger to protection during the preconditioning stimulus,

whereas during the index ischaemia and reperfusion they

contribute to injury.36 Also, a transient elevation in calcium

during the preconditioning stimulus might contribute to

the protection observed.37 Whereas an important role for

nitric oxide (NO) has unequivocally been shown in delayed

preconditioning, its role in classic preconditioning is more

controversial. Although exogenous administration of NO

donors prior to ischaemia can limit infarct size, endogenous

NO-synthase derived NO is probably not involved in classic

preconditioning.38

It is suggested that because of this redundancy concerning

the preconditioning triggers, blockade of one single receptor

type only raises the ischaemic threshold required to provide

protection, rather than completely blocking protection.32

Moreover, several studies suggest that the contribution

of each of these trigger substances to the induction of pre-

conditioning depends on the nature of the stimulus,

which should be realised when comparing results from

different study protocols.15,39

As previously mentioned, it is also possible to pharmaco-

logically precondition myocardium. Besides the above-men-

tioned triggers this can also be achieved with norepineph-

rine,40 endothelin-1,41 acetylcholine42 and angiotensin II,43

but these substances are not released in sufficient quantities

during ischaemia to contribute to endogenous protection.

After this triggering phase, an intracellular cascade of

events finally brings the cell into its protected phenotype

(figure 2). Several essential components of this cascade

have been identified, although the exact sequence has not

yet been fully elucidated. The activation of the intracellular

enzyme protein kinase C (PKC) is essential for ischaemic

preconditioning.44,45 Several studies have shown that PKC

activation is mediated via activation of phosphatidylin-

ositol-3-kinase (PI3K), which is an important upstream

signalling molecule.46,47 PI3K activates the serine/threonine

kinase Akt, which subsequently inactivates the proapoptotic

kinase glycogen synthase kinase-3 (GSK-3).48

Following activation, PKC actually translocates from the

cytosol to the particulate fraction where phosphorylation

of specific substrates can occur.49 Specific activation and

translocation of the isoform PKC-� seems to be responsible

for ischaemic preconditioning.50 Interestingly, in some

animal models only inhibition of PKC during the index

ischaemia aborts preconditioning, suggesting that PKC is

a mediator and not a trigger.51 Additionally, activation of a

tyrosine kinase mediates early preconditioning, either

downstream52 or in parallel with PKC.53 Also, each sub-

family of the mitogen-activated protein kinases (MAPKs),

namely the 42/44-kDa extracellular receptor kinase (ERK),

46/54-kDa c-jun kinase (JNK) and 38-kDa p38 MAPK, has

been proposed to be involved in the signalling cascade of

ischaemic preconditioning (reviewed by Michel et al. and

Armstrong).54,55

Another essential component of the mechanism leading to

early protection after preconditioning is the ATP-sensitive

potassium channel (KATP channel). This channel, which

opens when intracellular levels of ATP decline, is the known

target of sulphonylureas in the pancreas, but is also present

in cardiomyocytes and vascular smooth muscle cells.

Cardiomyocytes contain KATP channels located on both the

sarcolemma (sarcKATP channels) and the mitochondrial

inner membrane (mitoKATP channels). These channels have

different pharmacological profiles.36 Both channels are

blocked by glibenclamide whereas the mitoKATP channel

is selectively blocked by 5-hydroxydecanoate (5-HD).

Diazoxide opens the mitoKATP channel with far greater

affinity than the sarcKATP channels. Gross and Auchampach

first described the critical role of KATP channel opening in

ischaemic preconditioning, because early preconditioning

was completely inhibited by the administration of gliben-

clamide either before or immediately after the precondi-

tioning ischaemia.56 Initially, sarcKATP channels were held

responsible for preconditioning, but recent evidence

increasingly favours a role for mitoKATP channels (already

extensively reviewed).36,57,58 Several studies have shown that

the administration of diazoxide is able to mimic ischaemic

preconditioning59,60 and that 5-HD inhibits precondi-

tioning.61 However, some recent studies still suggest that

sarcoKATP channels are also involved.62 It appears likely that

opening mitoKATP channels is not only an end-effector of

preconditioning, but also a trigger, as opening is also essen-

tial during the preconditioning stimulus.36

Which end-effectors are involved and how these end-

effectors ultimately provide protection is the most elusive

part of ischaemic preconditioning. Inhibition of the sodium/

hydrogen exchanger, prevention of osmotic swelling and

prevention of cytoskeleton disruption by heat shock protein

HSP27 have all been proposed to act as end-effectors.8,63

Lately, however, accumulating evidence strongly suggests

that the various upstream signalling pathways all converge

on mitochondrial proteins aimed at limiting in particular

reperfusion injury. In order to adequately understand this

complex part of the preconditioning cascade, we will

briefly focus on mitochondrial function, with particular

emphasis on the role of mitochondria in reperfusion injury.

Although reperfusion is essential for cardiomyocytes to

survive a period of ischaemia, it is well appreciated that

Riksen, et al. Ischaemic preconditioning.



reperfusion itself can expedite cell death, which is known as

reperfusion injury.64 The mechanism of reperfusion injury

differs from ischaemic injury, best illustrated by the role

of apoptosis in both forms of injury. The vast majority of

studies on this topic conclude that apoptosis, in contrast

to necrotic cell death, only occurs or is accelerated during

reperfusion and not during ischaemia.65,66 Reperfusion is

characterised by a boost of ROS, which are important

mediators of reperfusion injury, as antioxidants, applied

during reperfusion, limit cellular death.67 Moreover, as

apoptosis is an energy-requiring form of cell death, it has

been postulated that reperfusion is essential to generate

the necessary amount of ATP molecules.68 Mitochondria

play a prominent role in reperfusion. The most important

function of mitochondria is the generation of ATP, by the

transfer of electrons on oxygen.69 This transfer is associated

with a transfer of H+ions from the inside to the outside of

the mitochondrial inner membrane, thus establishing the

mitochondrial transmembrane potential. Subsequently, the

passive inward flux of H+ions forms the driving force for

ATP production. Moreover, during electron transfer, 1 to

5% of ions lose their way and participate in the formation

of ROS.69 The mitochondrial permeability transition pore

(MPTP) is formed by multiprotein complexes capable of

forming large nonselective pores in the otherwise highly

impermeable inner mitochondrial membrane.70 There is a

large body of evidence that this pore, which remains closed

during ischaemia, opens during reperfusion.71 This pore

is characteristically opened by high mitochondrial [Ca2+],

oxidative stress, ATP depletion and mitochondrial depolari-

sation, all pre-eminently present during reperfusion.72

Mitochondrial permeability transition during reperfusion

results in uncoupling of the respiratory chain, ultimately

resulting in ATP depletion and necrosis on the one hand

and in matrix swelling and subsequent rupture of the outer

membrane leading to release of proapoptotic proteins and

apoptosis on the other hand.72 That opening of the MPTP

indeed contributes to reperfusion injury is convincingly

demonstrated by showing that inhibition of MPTP opening

at reperfusion, typically with cyclosporine A (CsA), sig-

nificantly reduces ischaemia/reperfusion injury.72

A series of recent studies has shown that ischaemic and

pharmacological preconditioning ultimately provide pro-

tection by inhibiting ROS-induced opening of the MPTP

during reperfusion.73-77 Very recently, an extensive and

elegant study by Juhaszova et al. showed that ischaemic

preconditioning as well as pharmacological preconditioning

by a wide variety of drugs act by inhibiting ROS-induced

MPTP opening at reperfusion and this study elucidated a

great part of the signalling cascade responsible for MPT

inhibition.78 They showed that cardioprotection with a

memory (e.g. by ischaemia, diazoxide, pinacidil, bradykinin)

opens mitoKATP channels, resulting in a subtle mitochon-

drial swelling, which increases electron transport and

gives rise to a small burst of ROS production, which acts

as a messenger to activate PKC, which ultimately converge

on phosphorylation of GSK-3�. Phosphorylation of GSK-3�

inhibits its function and inhibits MPTP opening during

reperfusion. Interestingly, GSK-3� can be inhibited by

lithium, which has previously been shown to reduce

infarct size.48

In conclusion, the infarct size limiting effect of ischaemic

preconditioning seems to be largely mediated by inhibition

of reperfusion injury and subsequent apoptosis. There is

convincing evidence that in myocardial infarction, both

necrosis and apoptosis are involved.79 Various animal

studies have shown significant reduction in myocardial

infarct size using inhibitors of apoptosis, such as caspase

inhibitors, during reperfusion.80-83 Moreover, caspase or

endonuclease inhibition after myocardial infarction attenu-

ates ventricular remodelling and improves contractile

function.80,84 Gottlieb et al. were the first to show that in

an in vitro model of rabbit cardiomyocytes, ischaemic

preconditioning inhibits ischaemia/reperfusion-induced

apoptosis.85 Later, this was confirmed in vivo in a rat model

of myocardial ischaemic preconditioning.14

With increasing emphasis on the pivotal role of limitation of

reperfusion injury in the infarct size limitation by ischaemic

preconditioning, several studies explored whether interven-

tions during reperfusion, rather than before ischaemia,

could also limit infarct size. This is of great potential

importance, as ischaemic insults are seldom predictable

and therefore interventions at the time of reperfusion are

more suited to most clinical scenarios. Indeed, intermittent

short repetitive interruptions to reperfusion at the very

onset of reperfusion were shown to provide similar pro-

tection to ischaemic preconditioning in dogs and rats, via

activation of the PI3K-Akt pathway86,87 (reviewed by

Hausenloy et al).88

D E L A Y E D  I S C H A E M I C  

P R E C O N D I T I O N I N G

In 1993, it was first described that the protective effect of

ischaemic preconditioning, which was previously thought

to be a transient phenomenon, reappears 24 hours after

the preconditioning ischaemic period and results in a

delayed protected phenotype.5,89 Although not as powerful

as the early protection provided by preconditioning (infarct

size reduction on average 50%),5,90 this delayed phase of

protection lasts up to 72 hours and, in that respect, might

be more therapeutically applicable in clinical practice.90

Moreover, this late phase of preconditioning also provides

robust protection against myocardial stunning.91 This

delayed phase of protection is also called ‘late’ precondi-

Riksen, et al. Ischaemic preconditioning.
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tioning or the ‘second window of protection’ (SWOP).

Although classical and delayed protection largely share

common signalling pathways, several essential differences

are present (figure 4). In this review, we only briefly high-

light the differences between classical and delayed pre-

conditioning, the latter being more extensively reviewed

elsewhere.8,92 The distinctive time course of delayed precon-

ditioning and its complete inhibition by protein syn-

thesis inhibitors93 suggest that synthesis of new proteins

is required to obtain the protected phenotype, which is

the most striking difference between classical and delayed

preconditioning. It is important to realise that the mech-

anisms mediating protection against infarction and against

stunning are not the same, although many pathways are

shared, evidenced by the fact that adenosine and KATP

channels play an obligatory role in protection against

infarction,94,95 but not against stunning.96

The most important difference between early and late pre-

conditioning regarding the trigger phase is that in delayed

preconditioning, in addition to the triggers which are also

active in classical preconditioning, endogenous nitric oxide

(NO) also provides delayed protection against both stunning

and infarction, most likely being derived from endothelial

NO synthase (eNOS).97,98 Subsequently, these triggers ini-

tiate a signalling cascade ultimately resulting in increased

transcription of cardioprotective genes. Indispensable for

this cascade are PKC99 and, probably downstream to PKC,

tyrosine kinases100 and most likely also other protein kinases,

which activate the important transcriptional regulator

nuclear factor-�B (NF-�B).101 Consequently, increased tran-

scription of protective proteins occurs, several of which

have been identified so far. Interestingly, NO synthase is

also essential during the index ischaemic insult for delayed

protection to occur. However, in contrast to the trigger

phase in which eNOS is probably involved, during index

ischaemia inducible NOS (iNOS) is upregulated and inhibition

of iNOS completely abrogates protection during this index

ischaemia.102 Similarly, selective inhibition during the index

ischaemia of cyclooxygenase (COX)-2, which was upregulated

24 hours after the preconditioning stimulus, completely

blocked protection against stunning as well as infarction.103

Other proteins that are upregulated and are important in

delayed preconditioning are superoxide dismutase, which

is an important antioxidant enzyme,104 and heat shock

proteins, although some controversy still exists about the

latter.8 How these upregulated proteins subsequently pro-

vide protection against ischaemic injury has not yet been

unravelled. However, there is evidence that activation of

protein tyrosine kinases is also necessary during the index

ischaemia for protection to occur, suggesting a role for

post-translational modification of the upregulated proteins.105

Finally, it is known that opening of KATP channels during

the index ischaemia is necessary for the infarct-sparing

effect of delayed preconditioning, whereas delayed pro-

tection against stunning does not seem to require KATP

channel opening.106 The observation that 5-HD during the

preconditioning ischaemia inhibits delayed protection

favours a role for the mitoKATP channel rather than the

sarcolemmal KATP channels.107 Although KATP channel

opening seems to be a final common pathway on which

the signalling cascades converge, it is not yet well under-

stood how opening of these channels provides protection.

Similar to early preconditioning, several pharmacological

interventions are able to trigger delayed protection, mim-

icking ischaemic preconditioning. In this regard, brief

exposure to selective adenosine A1 and A3 receptor agonists,

exogenous NO donors, ROS-generating substances, brady-

kinin, �-opioid agonists and norepinephrine provide delayed

protection to infarction.8 This offers possibilities for future

exploitation of this delayed mechanism in clinical practice.

R E M O T E  I S C H A E M I C  

P R E C O N D I T I O N I N G

In 1993, Przyklenk et al. extended the initial view on

ischaemic preconditioning tremendously by demonstrating

that brief preconditioning occlusions of the circumflex

Riksen, et al. Ischaemic preconditioning.
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Schematical illustration of the mechanism of delayed pre-
conditioning
In contrast to classical preconditioning, nitric oxide (NO) is an important

trigger of delayed protection. Activation of the transcriptional regulator

nuclear factor-�B (NF-�B) causes increased transcription of several

proteins. Opening of mitochondrial KATP channels is necessary for the

ultimate infarct limitation, but how these channels are opened is still

a matter of debate.



artery could also limit infarct size from subsequent sus-

tained occlusion of the left anterior descending artery in the

dog heart.6 This was called ‘remote intracardiac precon-

ditioning’. Later, it was shown that remote ischaemic

preconditioning was not limited to one particular organ

system. Transient occlusions of the mesenteric artery

limited myocardial infarct size by a subsequent prolonged

coronary occlusion,7,108 since than known as ‘inter-organ

preconditioning’, ‘remote preconditioning’ or ‘precondi-

tioning at a distance’. Since this original finding, remote

ischaemic preconditioning of the myocardium has been

accomplished by transient circulatory occlusion of the short

bowel,7,109 kidney110 and hind limb,111,112 but not of the brain.113

Similarly, preconditioning the limb in a pig model limited

infarct size in several remote skeletal muscles after a sub-

sequent prolonged ischaemia114 and transient ischaemia of

the liver rendered the kidney more resistant to subsequent

more severe ischaemia in rats.115

Early remote ischaemic preconditioning has been shown

in rats,7 rabbits116 and pigs,117 limiting myocardial infarct

size to a similar extent as classical preconditioning.7,112,118

Additionally, a second window of remote protection of the

myocardium by applying a short period of preconditioning

ischaemia to the small intestine has been shown in rats

and rabbits.116,119,120

The mechanism underlying remote ischaemic precondition-

ing is not yet as well defined as the mechanisms mediating

classic preconditioning. Interestingly, in the first study on

inter-organ remote preconditioning, Gho et al. already iden-

tified two important clues for understanding the mechanism

of protection.7 First, ganglionic blockade with hexametho-

nium prior to the preconditioning stimulus abolished

cardioprotection, suggesting neuronal involvement.

Secondly, reperfusion after the preconditioning ischaemia

was essential, suggesting that at reperfusion substances

are released in the mesenteric bed that stimulate afferent

neurofibres or directly protect the heart. Although several

other studies confirmed involvement of a neurogenic path-

way in mesenteric preconditioning of the myocardium,109,121

preconditioning with a more prolonged mesenteric occlu-

sion was not abolished by hexamethonium.122 Additional

evidence that a humoral factor is also involved in remote

preconditioning comes from the observation that in rabbits

cardioprotection by a preceding short period of coronary

occlusion can be transferred to a nonpreconditioned heart

via coronary effluent transfusion and even transfusion of

whole blood.123-125 This transferred protection is not mediated

via adenosine or norepinephrine in the effluent and can

be abolished by the opioid-antagonist naloxone. Additional

studies on mesenteric preconditioning of the myocardium

showed that capsaicine-sensitive sensory nerves might be

involved116 and that the protection is abolished by pretreat-

ment with naloxone126 and a bradykinin receptor antagonist121

before the transient mesenteric occlusion. Moreover, signal

transduction via PKC is proposed, based on the findings

that inhibition of PKC before as well as after the precon-

ditioning stimulus inhibits protection and that brief

mesenteric artery occlusion induces a rapid translocation

of PKC-� from the cytosol to membrane fractions in cardio-

myocytes.122,127 In a rabbit model, it was shown that cardio-

protection by a brief renal artery occlusion is totally abolished

by adenosine antagonism either before the renal occlusion

or before the subsequent coronary occlusion, proposing

a dual role for adenosine as trigger and mediator of

remote preconditioning.112,118 In line with these observations,

Liem et al. recently described evidence that in remote pre-

conditioning with small intestine ischaemia, locally

released adenosine triggers afferent nerves which in turn

leads to stimulation of cardiac adenosine receptors.109

Finally, very limited evidence suggests that remote pre-

conditioning also occurs in humans in vivo, using a sur-

rogate marker of ischaemic damage. Kharbanda et al.

showed that three five-minute cycles of forearm ischaemia

prevents reduction in acetylcholine-induced vasodilation

after 20 minutes of ischaemia of the contralateral arm.117
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